The CRISPR‒Cas9 system for genome editing of the ASS1 gene in human cells to predict its effect on HSV-1 replication

Authors

  • Nastaran Khodadad HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
  • Mona Fani Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
  • Mahboobeh Khodadad HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
  • Shokufeh Akbarinia HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
  • Zahra Goodarzi HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
  • Ali Teimoori Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran https://orcid.org/0000-0003-0766-8591

DOI:

https://doi.org/10.61882/jcbior.6.3.326

Keywords:

Genome editing, HSV-1, CRISPR-Cas9, ASS1 gene

Abstract

Herpes simplex virus type 1 (HSV-1) is a highly contagious pathogen that establishes lifelong latent infections. The replication of HSV-1 is potentially influenced by the arginine succinate synthase (ASS1) gene, a key regulator of cellular metabolism. This study utilized the CRISPR–Cas9 genome editing platform to specifically target and disrupt the ASS1 gene to examine its effect on viral propagation. A guide RNA (gRNA) was designed to complement a sequence within the ASS1 gene. A donor plasmid and the pCas-guide plasmid were cloned and cotransfected into the human embryonic kidney (HEK) cells with sheared adenovirus (Ad)5 DNA (HEK293-AD) cells. Potential ASS1-knockout clones were identified and validated via polymerase chain reaction (PCR) and DNA sequencing analysis. The impact on HSV-1 replication was quantified via a plaque assay to determine the viral titer. Sequencing data from ASS1-gRNA/Cas9-treated cells did not confirm successful gene knockout, as the intended ASS1 disruption was not achieved. The viral titer did not significantly differ between the HSV-1 infection group (MOI=0.01) and the control group. These findings indicate that the single gRNA designed for this study lacked sufficient specificity to elicit a CRISPR-Cas9-mediated gene knockout. Therefore, employing a set of more specific gRNAs is recommended to increase targeting efficiency. Further investigations are needed to elucidate the desired genetic modification and observe its subsequent effects on HSV-1.

References

1. Dutton AJ, Hayes CK, Leib DA, Akhtar LN. Herpes Simplex Virus Neurovirulence Across the Human Lifespan. J Infect Dis. 2025;232(1):14-24.

DOI: 10.1093/infdis/jiaf275 PMID: 40418737

2. Birkmann A, Saunders R. Overview on the management of herpes simplex virus infections: Current therapies and future directions. Antiviral Res. 2025;237:106152.

DOI: 10.1016/j.antiviral.2025.106152 PMID: 40154924

3. Szpara ML, Parsons L, Enquist LW. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol. 2010;84(10):5303-13.

DOI: 10.1128/JVI.00312-10 PMID: 20219902

4. Sawtell NM, Thompson RL. Alphaherpesvirus Latency and Reactivation with a Focus on Herpes Simplex Virus. Curr Issues Mol Biol. 2021;41:267-356. DOI: 10.21775/cimb.041.267 PMID: 32883886

5. Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, et al. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol. 2022;96(12):e0050822.

DOI: 10.1128/jvi.00508-22 PMID: 35608347

6. Grady SL, Purdy JG, Rabinowitz JD, Shenk T. Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection. Proc Natl Acad Sci U S A. 2013;110(51):E5006-15. DOI: 10.1073/pnas.1321305110

PMID: 24297925

7. Guo YF, Liao MQ, Cai WL, Yu XX, Li SN, Ke XY, et al. Physical activity, screen exposure and sleep among students during the pandemic of COVID-19. Sci Rep. 2021;11(1):8529.

DOI: 10.1038/s41598-021-88071-4 PMID: 33879822

8. Ohshima K, Nojima S, Tahara S, Kurashige M, Hori Y, Hagiwara K, et al. Argininosuccinate Synthase 1-Deficiency Enhances the Cell Sensitivity to Arginine through Decreased DEPTOR Expression in Endometrial Cancer. Sci Rep. 2017;7:45504.

DOI: 10.1038/srep45504 PMID: 28358054

9. Jamehdor S, Sangtarash MH, Farivar S, Amini R, Teimoori A. Correlation of arginine metabolism with neurodegenerative diseases in infected cells with herpes simplex virus-1. Reviews and Research in Medical Microbiology. 2022;33(1):45-50.

DOI: 10.1097/MRM.0000000000000264

10. Li T. An Essential Role of Argininosuccinate Synthase 1 in Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation: University of Southern California; 2016. URL: https://search.proquest.com/openview/761c21ac2e9910afc28e810f92f47a0c/1?pq-origsite=gscholar&cbl=18750

11. Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses. 2020;13(1):17.

DOI: 10.3390/v13010017 PMID: 33374862

12. Khatun R, Sengupta S, Bhattacharya M. Bacterial Microbial Defense Systems: From CRISPR-Cas Mechanisms to Emerging Anti-Phage Strategies. IJoI. 2025;13(3):52-8.

DOI: 10.11648/j.iji.20251303.12

13. Ganger S, Harale G, Majumdar P. Clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems: Discovery, structure, classification, and general mechanism. CRISPR/Cas-Mediated Genome Editing in Plants: Apple Academic Press; 2023. p. 65-97.

DOI: 10.1201/9781003331759

14. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. DOI: 10.1038/srep02510 PMID: 23974631

15. Song J, Kim S, Kim HY, Hur KH, Kim Y, Park HG. A novel method to detect mutation in DNA by utilizing exponential amplification reaction triggered by the CRISPR-Cas9 system. Nanoscale. 2021;13(15):7193-7201. DOI: 10.1039/d1nr00438g PMID: 33720266

16. Kozovska Z, Rajcaniova S, Munteanu P, Dzacovska S, Demkova L. CRISPR: History and perspectives to the future. Biomed Pharmacother. 2021;141:111917.

DOI: 10.1016/j.biopha.2021.111917 PMID: 34328110

17. Vasques Raposo J, Rodrigues Carvalho Barros L, Ribas Torres L, Barbosa da Silva Pinto R, De Oliveira Lopes A, Mello de Souza E, et al. CRISPR/Cas-9 vector system: targets UL-39 and inhibits Simplexvirus humanalpha1 (HSV-1) replication in vitro. Cell Mol Biol (Noisy-le-grand). 2023;69(7):19-23.

DOI: 10.14715/cmb/2023.69.7.3 PMID: 37715442

18. Sachkova M, Modepalli V, Kittelmann M. The Deep Evolutionary Roots of the Nervous System. Annu Rev Neurosci. 2025;48(1):311-329. DOI: 10.1146/annurev-neuro-112723-040945 PMID: 40198851

19. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36(1):59-74. DOI: 10.1099/0022-1317-36-1-59 PMID: 886304

20. Khodadad N, Fani M, Jamehdor S, Nahidsamiei R, Makvandi M, Kaboli S, et al. A knockdown of the herpes simplex virus type-1 gene in all-in-one CRISPR vectors. Folia Histochem Cytobiol. 2020;58(3):174-181. DOI: 10.5603/FHC.a2020.0020

PMID: 32937678

21. Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 2004;32(1):e3. DOI: 10.1093/nar/gnh009 PMID: 14704360

22. Bollen Y, Post J, Koo BK, Snippert HJG. How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res. 2018;46(13):6435-6454. DOI: 10.1093/nar/gky571 PMID: 29955892

23. Liu YC, Cai ZM, Zhang XJ. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl. 2016;18(3):475-9.

DOI: 10.4103/1008-682X.157399 PMID: 26228041

24. Ge X, Xi H, Yang F, Zhi X, Fu Y, Chen D, et al. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells. Mol Ther Nucleic Acids. 2016;5(11):e393.

DOI: 10.1038/mtna.2016.100 PMID: 27898094

25. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80-4. DOI: 10.1126/science.1246981

PMID: 24336569

26. GSL Biotech LLC. SnapGene Viewer (Version 8.0.4). 2023. URL: https://www.snapgene.com/snapgene-viewer

27. Sambrook J, Russell DW. Molecular Cloning: Ch. 8. In Vitro amplification of DNA by the polymerase chain reaction: Cold Spring Harbor Laboratory Press; 2001. URL: https://www.gob.mx/cms/uploads/attachment/file/685877/5098_-Sambrook_J.-_Molecular_Clonning_compressed.pdf

28. Okasha H, Samir S. Synthesis and molecular cloning of antimicrobial peptide chromogranin A N-46 gene using conventional PCR. Gene Reports. 2020;18:100571.

DOI: 10.1016/j.genrep.2019.100571

29. Soltani M, Sadrebazzaz A, Nassiri M, Tahmoorespoor M. Cloning, Nucleotide Sequencing and Bioinformatics Study of NcSRS2 Gene, an Immunogen from Iranian Isolate of Neospora caninum. Iran J Parasitol. 2013;8(1):114-27. PMID: 23682269

30. Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, et al. Inhibition of HSV-1 Replication by Gene Editing Strategy. Sci Rep. 2016;6:23146. DOI: 10.1038/srep23146 PMID: 27064617

31. Fani M, Khodadad N, Ebrahimi S, Ghafari S, Makvandi M, Teimoori A, et al. Zinc Sulfate in Narrow Range as an In Vitro Anti-HSV-1 Assay. Biol Trace Elem Res. 2020;193(2):410-413. DOI: 10.1007/s12011-019-01728-0 PMID: 31028520

32. Nahid Samiei R, Ebrahimi S, Fani M, Ghafari S, Makvandi M, Khodadad N, et al. In vitro effect of some nucleoside reverse transcriptase inhibitors against HSV-1 replication. Eur Rev Med Pharmacol Sci. 2020;24(3):1454-1459.

DOI: 10.26355/eurrev_202002_20204 PMID: 32096195

33. Yuan F, Guo D, Liu Y, Xu Y, Gao G, Wu Y, et al. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9. Stem Cell Res. 2018;26:67-71. DOI: 10.1016/j.scr.2017.11.007 PMID: 29247816

34. Ariav Y, Ch'ng JH, Christofk HR, Ron-Harel N, Erez A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci Adv. 2021;7(21):eabg6165. DOI: 10.1126/sciadv.abg6165 PMID: 34138729

35. Becker Y, Olshevsky U, Levitt J. The role of arginine in the replication of herpes simplex virus. J Gen Virol. 1967;1(4):471-8. DOI: 10.1099/0022-1317-1-4-471 PMID: 4295376

36. Inglis VB. Requirement of arginine for the replication of herpes virus. J Gen Virol. 1968;3(1):9-17. DOI: 10.1099/0022-1317-3-1-9 PMID: 4300568

37. Meingast C, Heldt CL. Arginine-enveloped virus inactivation and potential mechanisms. Biotechnol Prog. 2020;36(2):e2931.

DOI: 10.1002/btpr.2931 PMID: 31622532

38. Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis. 2021;102:566-570. DOI: 10.1016/j.ijid.2020.10.100 PMID: 33160064

39. Wildy P, Gell PG, Rhodes J, Newton A. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase? Infect Immun. 1982;37(1):40-5.

DOI: 10.1128/iai.37.1.40-45.1982 PMID: 6286497

40. Sanchez MD, Ochoa AC, Foster TP. Development and evaluation of a host-targeted antiviral that abrogates herpes simplex virus replication through modulation of arginine-associated metabolic pathways. Antiviral Res. 2016;132:13-25.

DOI: 10.1016/j.antiviral.2016.05.009 PMID: 27192555

41. Jin YY, Zhang P, Liu DP. Optimizing homology-directed repair for gene editing: the potential of single-stranded DNA donors. Trends Genet. 2025;41(9):788-803.

DOI: 10.1016/j.tig.2025.04.014 PMID: 40436684

42. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10(10):1028-34. DOI: 10.1038/nmeth.2641 PMID: 23995389

43. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-191. DOI: 10.1038/nbt.3437

PMID: 26780180

Published

2025-09-30

Issue

Section

Original articles

How to Cite

The CRISPR‒Cas9 system for genome editing of the ASS1 gene in human cells to predict its effect on HSV-1 replication. (2025). Journal of Current Biomedical Reports, 6(3), 72-79. https://doi.org/10.61882/jcbior.6.3.326

Similar Articles

1-10 of 128

You may also start an advanced similarity search for this article.