Lung cancer and the microbiome: Key bacterial players in carcinogenesis and therapy
DOI:
https://doi.org/10.61882/jcbior.6.4.324Keywords:
Lung cancer, Microbiome, Dysbiosis, Gut-lung axisAbstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non–small cell lung cancer (NSCLC) constituting the majority of cases. Despite therapeutic advances in chemotherapy, targeted therapy, and immune checkpoint inhibitors (ICIs), treatment outcomes remain heterogeneous. Increasing evidence indicates that the human microbiome including the respiratory, gut, and intratumoral compartments plays a crucial role in lung carcinogenesis and therapeutic response. This narrative review synthesizes recent findings on the microbiome’s contribution to lung cancer biology and therapy. The healthy lung microbiota is characterized by low biomass yet consistent phyla composition, primarily Bacteroidetes and Firmicutes, while dysbiosis in lung cancer often features enrichment of Streptococcus, Veillonella, Prevotella, Haemophilus, and Fusobacterium. These taxa may drive carcinogenesis through immune modulation, chronic inflammation, metabolic signaling, and genotoxic or epigenetic alterations. Beyond the lung, gut microbial diversity and metabolites such as short-chain fatty acids (SCFAs) influence systemic immunity and modulate response to chemotherapy, targeted agents, and ICIs. Antibiotic-induced dysbiosis has been linked to reduced immunotherapy efficacy and shorter progression-free survival in NSCLC cohorts. Emerging microbiome-modulation strategies including probiotics, prebiotics, dietary interventions, fecal microbiota transplantation (FMT), and engineered bacterial therapeutics show promise as adjuncts to precision oncology. However, safety, reproducibility, and mechanistic causality remain major challenges. Collectively, evidence supports the microbiome as a dynamic regulator of lung cancer progression and therapy responsiveness. Future research should prioritize longitudinal, multi-omics investigations and controlled clinical trials to identify predictive microbial biomarkers and develop standardized, personalized microbiome-based interventions for lung cancer management.
References
1. Rojiani MV, Rojiani AM. Non-Small Cell Lung Cancer-Tumor Biology. Cancers (Basel). 2024;16(4):716.
DOI: 10.3390/cancers16040716 PMID: 38398107
2. Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023;22(1):40. DOI: 10.1186/s12943-023-01740-y PMID: 36810079
3. Lucaciu SR, Domokos B, Puiu R, Ruta V, Motoc SN, Rajnoveanu R, et al. Lung Microbiome in Lung Cancer: A Systematic Review. Microorganisms. 2024;12(12):2439.
DOI: 10.3390/microorganisms12122439 PMID: 39770642
4. Bou Zerdan M, Kassab J, Meouchy P, Haroun E, Nehme R, Bou Zerdan M, et al. The Lung Microbiota and Lung Cancer: A Growing Relationship. Cancers (Basel). 2022;14(19):4813.
DOI: 10.3390/cancers14194813 PMID: 36230736
5. Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol. 2023;13:1257515.
DOI: 10.3389/fonc.2023.1257515 PMID: 38074650
6. O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. J Immunol. 2016;196(12):4839-47.
DOI: 10.4049/jimmunol.1600279 PMID: 27260767
7. Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D, et al. The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol. 2021;11:720842.
DOI: 10.3389/fonc.2021.720842 PMID: 34490119
8. Asgharzadeh S, Pourhajibagher M, Bahador A. The microbial landscape of tumors: a deep dive into intratumoral microbiota. Front Microbiol. 2025;16:1542142.
DOI: 10.3389/fmicb.2025.1542142 PMID: 40463434
9. Wang N, Wu S, Huang L, Hu Y, He X, He J, et al. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci. 2025;32(1):23. DOI: 10.1186/s12929-025-01117-x PMID: 39966840
10. Kwiatkowska AM, Guzmán JA, Lafaurie GI, Castillo DM, Cardona AF. Exploring the role of the oral microbiome in saliva, sputum, bronchoalveolar fluid, and lung cancer tumor tissue: A systematic review. Transl Oncol. 2025;62:102557.
DOI: 10.1016/j.tranon.2025.102557 PMID: 41046586
11. Goto T. Microbiota and lung cancer. Semin Cancer Biol. 2022;86(Pt 3):1-10.
DOI: 10.1016/j.semcancer.2022.07.006 PMID: 35882258
12. Bello S, Vengoechea JJ, Ponce-Alonso M, Figueredo AL, Mincholé E, Rezusta A, et al. Core Microbiota in Central Lung Cancer With Streptococcal Enrichment as a Possible Diagnostic Marker. Arch Bronconeumol. 2021;57(11):681-689.
DOI: 10.1016/j.arbr.2020.05.017 PMID: 35699005
13. Tsay JJ, Wu BG, Sulaiman I, Gershner K, Schluger R, Li Y, et al. Lower Airway Dysbiosis Affects Lung Cancer Progression. Cancer Discov. 2021;11(2):293-307.
DOI: 10.1158/2159-8290.CD-20-0263 PMID: 33177060
14. Tsay JJ, Darawshy F, Wang C, Kwok B, Wong KK, Wu BG, et al. Lung Microbial and Host Genomic Signatures as Predictors of Prognosis in Early-Stage Adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2024;33(11):1433-1444. DOI: 10.1158/1055-9965.EPI-24-0661 PMID: 39225784
15. Horn KJ, Schopper MA, Drigot ZG, Clark SE. Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung. Nat Commun. 2022;13(1):3321. DOI: 10.1038/s41467-022-31074-0 PMID: 35680890
16. Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol. 2024;14:1296295. DOI: 10.3389/fcimb.2024.1296295 PMID: 38371298
17. Xu N, Wang L, Li C, Ding C, Li C, Fan W, et al. Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res. 2020;9(4):1554-1568. DOI: 10.21037/tlcr-20-156 PMID: 32953527
18. Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol. 2020;4(1):33.
DOI: 10.1038/s41698-020-00138-z PMID: 33303906
19. Garg S, Sharma N, Bharmjeet, Das A. Unraveling the intricate relationship: Influence of microbiome on the host immune system in carcinogenesis. Cancer Rep (Hoboken). 2023;6(11):e1892. DOI: 10.1002/cnr2.1892 PMID: 37706437
20. Thomas RM. Microbial molecules, metabolites, and malignancy. Neoplasia. 2025;60:101128. DOI: 10.1016/j.neo.2025.101128 PMID: 39827500
21. Shatova OP, Zabolotneva AA, Shestopalov AV. Molecular Ensembles of Microbiotic Metabolites in Carcinogenesis. Biochemistry (Mosc). 2023;88(7):867-879.
DOI: 10.1134/S0006297923070027 PMID: 37751860
22. Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, et al. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond). 2024;44(10):1130-1167.
DOI: 10.1002/cac2.12597 PMID: 39087354
23. Zechner EL, Kienesberger S. Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem. Gut Microbes. 2024;16(1):2430423.
DOI: 10.1080/19490976.2024.2430423 PMID: 39558480
24. Plewa P, Kiełbowski K, Mentel O, Figiel K, Bakinowska E, Becht R, et al. Bacteria and Carcinogenesis and the Management of Cancer: A Narrative Review. Pathogens. 2025;14(5):509.
DOI: 10.3390/pathogens14050509 PMID: 40430828
25. Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ, Wu JB. Bacteria in cancer therapy: A new generation of weapons. Cancer Med. 2022;11(23):4457-4468.
DOI: 10.1002/cam4.4799 PMID: 35522104
26. Zhang M, Liu J, Xia Q. Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp Hematol Oncol. 2023;12(1):84. DOI: 10.1186/s40164-023-00442-x PMID: 37770953
27. Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res. 2024;64:223-235.
DOI: 10.1016/j.jare.2023.11.027 PMID: 38013112
28. He J, Chen Y, Zhao H, Li Y. The interplay between gut bacteria and targeted therapies: implications for future cancer treatments. Mol Med. 2025;31(1):58. DOI: 10.1186/s10020-025-01108-6 PMID: 39948481
29. Kunjalwar R, Keerti A, Chaudhari A, Sahoo K, Meshram S. Microbial Therapeutics in Oncology: A Comprehensive Review of Bacterial Role in Cancer Treatment. Cureus. 2024;16(10):e70920.
DOI: 10.7759/cureus.70920 PMID: 39502977
30. Ren S, Feng L, Liu H, Mao Y, Yu Z. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer. 2024;15(14):1149-1163.
DOI: 10.1111/1759-7714.15303 PMID: 38572783
31. Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev. 2024;210:115332.
DOI: 10.1016/j.addr.2024.115332 PMID: 38759702
32. Silveira MAD, Rodrigues RR, Trinchieri G. Intestinal Microbiome Modulation of Therapeutic Efficacy of Cancer Immunotherapy. Gastroenterol Clin North Am. 2025;54(2):295-315. DOI: 10.1016/j.gtc.2024.10.005 PMID: 40348489
33. Xie J, Zhu N, Xu W. Integrative multi-omics analysis of the microbiome and metabolome in bronchoalveolar lavage fluid from patients with early-stage lung cancer. Front Cell Infect Microbiol. 2025;15:1513270. DOI: 10.3389/fcimb.2025.1513270 PMID: 40357400
34. Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J. 2023;21:4933-4943.
DOI: 10.1016/j.csbj.2023.10.016 PMID: 37867968
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



