Targeted mechanisms and novel therapeutic strategies against extended-spectrum beta-lactamases: From precise detection to intelligent management of bacterial resistance
DOI:
https://doi.org/10.61882/jcbior.6.3.312Keywords:
Antibiotic resistance, Bacterial infections, Beta-lactamase, Epidemiology, DiagnosisAbstract
Extended-spectrum beta-lactamases (ESBLs) are enzymes that resist beta-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, and are produced by a variety of bacteria, including Escherichia coli and Klebsiella pneumoniae. Since ESBLs are often plasmid-borne, antibiotic resistance can spread across bacteria due to their ease of transfer. The intricate structure of ESBLs changes based on the type of bacterium that produces them. However, they all share a beta-lactamase core structure. ESBLs act by hydrolyzing the beta-lactam ring of antibiotics thereby rendering them ineffective. Detection of ESBL-producing bacteria is very important for effective treatment of infections. These enzymes can be identified through various diagnostic methods, such as phenotypic tests and molecular assays. The most common diagnostic method is an antimicrobial susceptibility test, which involves testing bacterial sensitivity to different antibiotics. Furthermore, the use of molecular testing techniques like polymerase chain reaction is growing in the identification of ESBLs. This paper provides a summary of ESBLs, including their structure, function, and diagnostic methods. Thus, it is critical to comprehend ESBLs in order to create therapies that effectively address illnesses brought on by bacteria that produce ESBL.
References
1. Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. Int J Mol Sci. 2018;19(8):2222. DOI: 10.3390/ijms19082222 PMID: 30061509
2. Leylabadlo HE, Pourlak T, Bialvaei AZ, Aghazadeh M, Asgharzadeh M, Kafil HS. Extended-spectrum beta-lactamase producing gram negative bacteria in iran: A review. Afr J Infect Dis. 2017;11(2):39-53. DOI: 10.21010/ajid.v11i2.6
PMID: 28670639
3. Sales A, Fathi R, Mobaiyen H, Bonab FR, Kondlaji K, Sadeghnezhadi M. Molecular study of the prevalence of CTX-M1, CTX-M2, CTXM3 in Pseudomonas aeruginosa isolated from clinical samples in Tabriz Town, Iran. Electronic J Biol. 2017;13(3):253-9.
URL: https://www.researchgate.net/publication/323228914
4. Jafari-Sales A, Bagherizadeh Y, Arzani-Birgani P, Shirali M, Shahniani AR. Study of Antibiotic Resistance and Prevalence of bla-TEM gene in Klebsiella pneumoniae Strains isolated from Children with UTI in Tabriz Hospitals. Focus On Medical Sciences Journal. 2018;4(1):9-13.
URL: https://www.researchgate.net/publication/326344977
5. Islam MS, Rahman AT, Hassan J, Rahman MT. Extended-spectrum beta-lactamase in Escherichia coli isolated from humans, animals, and environments in Bangladesh: A One Health perspective systematic review and meta-analysis. One Health. 2023;16:100526. DOI: 10.1016/j.onehlt.2023.100526
6. Jafari Sales A, Mobaiyen H, Farshbafi Nezhad Zoghi J, Nezamdoost Shadbad N, Purabdollah Kaleybar V. Antimicrobial resistance pattern of extended-spectrum β-Lactamases (ESBLs) producing Escherichia coli isolated from clinical samples in Tabriz city, Iran. Adv Environ Biol. 2014;8(16):179-82.
URL: https://www.researchgate.net/publication/323074853
7. Dantas Palmeira J, Ferreira HMN. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon. 2020;6(1):e03206. DOI: 10.1016/j.heliyon.2020.e03206
PMID: 32042963
8. Veiga RP, Paiva JA. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care. 2018;22(1):233. DOI: 10.1186/s13054-018-2155-1 PMID: 30244674
9. Egorov AM, Ulyashova MM, Rubtsova MY. Inhibitors of β-Lactamases. New Life of β-Lactam Antibiotics. Biochemistry (Mosc). 2020;85(11):1292-1309.
DOI: 10.1134/S0006297920110024 PMID: 33280574
10. Sadeghi H, Bakht M, Khanjani S, Aslanimehr M, Nikkhahi F, Fardsanei F, et al. Systematic review and meta-analysis on the prevalence of extended-spectrum β-lactamases-producing Acinetobacter baumannii in Iran: Evaluation of TEM, PER, SHV, CTX-M, VEB and GES. Microb Pathog. 2025;204:107554.
DOI: 10.1016/j.micpath.2025.107554 PMID: 40194610
11. Geleta D, Abebe G, Alemu B, Workneh N, Beyene G. Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. New Microbiol. 2024;47(1):1-14. PMID: 38700878
12. Li XZ, Mehrotra M, Ghimire S, Adewoye L. beta-Lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol. 2007;121(3-4):197-214.
DOI: 10.1016/j.vetmic.2007.01.015 PMID: 17306475
13. Pai Mangalore R, Peel TN, Udy AA, Peleg AY. The clinical application of beta-lactam antibiotic therapeutic drug monitoring in the critical care setting. J Antimicrob Chemother. 2023;78(10):2395-2405.
DOI: 10.1093/jac/dkad223 PMID: 37466209
14. Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z, et al. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog. 2021;158:105040.
DOI: 10.1016/j.micpath.2021.105040 PMID: 34119627
15. Lawrence J, O'Hare D, van Batenburg-Sherwood J, Sutton M, Holmes A, Rawson TM. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat Commun. 2024;15(1):9070. DOI: 10.1038/s41467-024-53192-7 PMID: 39433753
16. Jean SS, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. Int J Antimicrob Agents. 2016;47(4):328-34.
DOI: 10.1016/j.ijantimicag.2016.01.008 PMID: 27005459
17. Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z, et al. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog. 2021;158:105040.
DOI: 10.1016/j.micpath.2021.105040 PMID: 34119627
18. Petrosillo N, Vranić-Ladavac M, Feudi C, Villa L, Fortini D, Barišić N, et al. Spread of Enterobacter cloacae carrying blaNDM-1, blaCTX-M-15, blaSHV-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia. J Glob Antimicrob Resist. 2016;4:44-48.
DOI: 10.1016/j.jgar.2015.09.008 PMID: 27436392
19. Brown NG, Pennington JM, Huang W, Ayvaz T, Palzkill T. Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM β-lactamases. J Mol Biol. 2010;404(5):832-46. DOI: 10.1016/j.jmb.2010.10.008 PMID: 20955714
20. Pimenta AC, Fernandes R, Moreira IS. Evolution of drug resistance: insight on TEM β-lactamases structure and activity and β-lactam antibiotics. Mini Rev Med Chem. 2014;14(2):111-22. DOI: 10.2174/1389557514666140123145809
PMID: 24456272
21. Subirats J, Sànchez-Melsió A, Borrego CM, Balcázar JL, Simonet P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents. 2016;48(2):163-7. DOI: 10.1016/j.ijantimicag.2016.04.028 PMID: 27312355
22. Tzouvelekis LS, Bonomo RA. SHV-type beta-lactamases. Curr Pharm Des. 1999;5(11):847-64. PMID: 10539992
23. Vatcheva-Dobrevska R, Mulet X, Ivanov I, Zamorano L, Dobreva E, Velinov T, et al. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist. 2013;19(5):355-61. DOI: 10.1089/mdr.2013.0004 PMID: 23600605
24. Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med. 2005;352(4):380-91. DOI: 10.1056/NEJMra041359
PMID: 15673804
25. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. DOI: 10.1016/j.sjbs.2014.08.002 PMID: 25561890
26. Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem. 2020;208:112829.
DOI: 10.1016/j.ejmech.2020.112829 PMID: 33002736
27. Turner J, Muraoka A, Bedenbaugh M, Childress B, Pernot L, Wiencek M, et al. The Chemical Relationship Among Beta-Lactam Antibiotics and Potential Impacts on Reactivity and Decomposition. Front Microbiol. 2022;13:807955.
DOI: 10.3389/fmicb.2022.807955 PMID: 35401470
28. Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem. 2020;208:112829.
DOI: 10.1016/j.ejmech.2020.112829 PMID: 33002736
29. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159(6):1300-11.
DOI: 10.1016/j.cell.2014.11.017 PMID: 25480295
30. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160-201.
DOI: 10.1128/CMR.00037-09 PMID: 20065329
31. Lin X, Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl Microbiol Biotechnol. 2022;106(24):8007-8020. DOI: 10.1007/s00253-022-12272-8 PMID: 36401643
32. Correa-Martínez CL, Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid Detection of Extended-Spectrum β-Lactamases (ESBL) and AmpC β-Lactamases in Enterobacterales: Development of a Screening Panel Using the MALDI-TOF MS-Based Direct-on-Target Microdroplet Growth Assay. Front Microbiol. 2019;10:13. DOI: 10.3389/fmicb.2019.00013
PMID: 30733710
33. Alizade H, Fallah F, Ghanbarpour R, Goudarzi H, Sharifi H, Aflatoonian MR. Comparison of Disc Diffusion, Broth Microdilution and Modified Hodge Test Susceptibility Testing Of Escherichia coli Isolates to Beta-Lactam Antibiotics. Medical Laboratory Journal. 2016;10(2).
DOI: 10.18869/acadpub.mlj.10.2.19
34. Jacob ME, Keelara S, Aidara-Kane A, Matheu Alvarez JR, Fedorka-Cray PJ. Optimizing a Screening Protocol for Potential Extended-Spectrum β-Lactamase Escherichia coli on MacConkey Agar for Use in a Global Surveillance Program. J Clin Microbiol. 2020;58(9):e01039-19.
DOI: 10.1128/JCM.01039-19 PMID: 32434784
35. Weinstein MP, Lewis JS 2nd. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, Organization, Functions, and Processes. J Clin Microbiol. 2020;58(3):e01864-19.
DOI: 10.1128/JCM.01864-19 PMID: 31915289
36. Singh N, Pattnaik D, Neogi DK, Jena J, Mallick B. Prevalence of ESBL in Escherichia coli Isolates Among ICU Patients in a Tertiary Care Hospital. J Clin Diagn Res. 2016;10(9):DC19-DC22. DOI: 10.7860/JCDR/2016/21260.8544 PMID: 27790433
37. Kanlidere Z, Karatuna O, Kocagöz T. Rapid detection of beta-lactamase production including carbapenemase by thin layer chromatography. J Microbiol Methods. 2019;156:15-19.
DOI: 10.1016/j.mimet.2018.11.016 PMID: 30468751
38. Grimm V, Ezaki S, Susa M, Knabbe C, Schmid RD, Bachmann TT. Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol. 2004;42(8):3766-74. DOI: 10.1128/JCM.42.8.3766-3774.2004 PMID: 15297528
39. Kim EJ, Lee J, Yoon Y, Lee D, Baek Y, Takano C, et al. Development of a novel loop-mediated isothermal amplification assay for β-lactamase gene identification using clinical isolates of Gram-negative bacteria. Front Cell Infect Microbiol. 2023;12:1000445. DOI: 10.3389/fcimb.2022.1000445
PMID: 36710975
40. Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, et al. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023;11(11):2937. DOI: 10.3390/biomedicines11112937 PMID: 38001938
41. Papp-Wallace KM. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin Pharmacother. 2019;20(17):2169-2184. DOI: 10.1080/14656566.2019.1660772 PMID: 31500471
42. Sargianou M, Stathopoulos P, Vrysis C, Tzvetanova ID, Falagas ME. New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics. Pathogens. 2025;14(4):307.
DOI: 10.3390/pathogens14040307 PMID: 40333039
43. Jacobowski AC, Boleti APA, Cruz MV, Santos KFDP, de Andrade LRM, Frihling BEF, et al. Combating Antimicrobial Resistance: Innovative Strategies Using Peptides, Nanotechnology, Phages, Quorum Sensing Interference, and CRISPR-Cas Systems. Pharmaceuticals (Basel). 2025;18(8):1119. DOI: 10.3390/ph18081119 PMID: 40872511
44. Mengesha Y. Nanomedicine approaches to enhance the effectiveness of meropenem: a strategy to tackle antimicrobial resistance. Discov Nano. 2025;20(1):63. DOI: 10.1186/s11671-025-04244-4 PMID: 40169425
45. Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Aly SA. Nanoparticles based combined antimicrobial drug delivery system as a solution for bacterial resistance. Bulletin of Pharmaceutical Sciences Assiut University. 2022;45(2):1121-41. DOI: 10.21608/bfsa.2022.271825
46. Rizvi SMD, Lila ASA, Moin A, Hussain T, Kamal MA, Sonbol H, et al. Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics. 2023;15(2):430. DOI: 10.3390/pharmaceutics15020430
PMID: 36839753
47. Skaradzińska A, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Rząsa A, Friese A, et al. The Efficacy of Isolated Bacteriophages from Pig Farms against ESBL/AmpC-Producing Escherichia coli from Pig and Turkey Farms. Front Microbiol. 2017;8:530.
DOI: 10.3389/fmicb.2017.00530 PMID: 28405193
48. Shamsuzzaman M, Kim S, Kim J. Therapeutic potential of novel phages with antibiotic combinations against ESBL-producing and carbapenem-resistant Escherichia Coli. J Glob Antimicrob Resist. 2025;43:86-97. DOI: 10.1016/j.jgar.2025.04.005
PMID: 40268052
49. Anastassopoulou C, Ferous S, Petsimeri A, Gioula G, Tsakris A. Phage-Based Therapy in Combination with Antibiotics: A Promising Alternative against Multidrug-Resistant Gram-Negative Pathogens. Pathogens. 2024;13(10):896.
DOI: 10.3390/pathogens13100896 PMID: 39452768
50. Liu C, Hong Q, Chang RYK, Kwok PCL, Chan HK. Phage-Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics (Basel). 2022;11(5):570.
DOI: 10.3390/antibiotics11050570 PMID: 35625214
51. Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech. 2024;14(10):256.
DOI: 10.1007/s13205-024-04101-8 PMID: 39355200
52. Fayyad-Kazan M. Transformative Precision Tools to Combat Antimicrobial Resistance in Multidrug-Resistant Gram-Negative Pathogens. Genesis J Microbiol Immunol. 2024;1(1):9. URL: https://www.genesispub.org/crispr-cas-systems-transformative-precision-tools-to-combat-antimicrobial-resistance-in-multidrug-resistant-gram-negative-pathogens
53. Moitra A, Chakraborty A, Dam B. CRISPR-Cas9 system: A potent tool to fight antibiotic resistance in bacteria. The Microbe. 2024;5:100184. DOI: 10.1016/j.microb.2024.100184
54. Ahmed MM, Kayode HH, Okesanya OJ, Ukoaka BM, Eshun G, Mourid MR, et al. CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials, and Future Directions. Infect Drug Resist. 2024;17:5229-5245.
DOI: 10.2147/IDR.S494327 PMID: 39619730
55. Lee D, Muir P, Lundberg S, Lundholm A, Sandegren L, Koskiniemi S. A CRISPR-Cas9 system protecting E. coli against acquisition of antibiotic resistance genes. Sci Rep. 2025;15(1):1545. DOI: 10.1038/s41598-025-85334-2
PMID: 39789078
56. Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis. 2023;9(7):1283-1302.
DOI: 10.1021/acsinfecdis.2c00649 PMID: 37347230
57. Kundar R, Gokarn K. CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals (Basel). 2022;15(12):1498. DOI: 10.3390/ph15121498
PMID: 36558949
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



