The role of Honeysuckle-derived microRNA2911 in control of viral infections

Zahra Iman Dust, Nastaran Saadat, Iman Owliaee, Shahab Mahmoudvand, Somayeh Shokri, Hossein Vakilimofrad, Farid Azizi Jalilian

Abstract


MicroRNAs (miRNAs) are non-coding RNA that plays prominent roles in gene regulation mechanisms. Honeysuckle decoction (HD) extract has miRNA-2911 (miR-2911) and may be absorbed into the gastrointestinal (GI) system via SID transmembrane family member 1 (SIDT1) receptors. Several studies have shown inhibitory effects of miR-2911 on NA, PB2, and NS1 proteins of influenza virus (flu), VP1 of enterovirus 71 (EV71), IE62 of varicella-zoster virus (VZV), and SARS-COV-2 (SCOV-2) proliferation. MiRNA-2911 has the potential to change how these viruses are treated and controlled by employing herbal substances instead of chemical medications. This could be a new step in controlling viral infections but requires further studies.


Keywords


miRNAs; miR-2911; Honeysuckle; Viral infection; Herbal substances

Full Text:

Full-text PDF

References


Sun Y-M, Chen Y-Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol. 2020;13(1):109. DOI: 10.1186/s13045-020-00945-8

Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget. 2018;9(26):18648-63. DOI: 10.18632/oncotarget.24307 PMID: 29719633

Li X, Peng J, Yi C. The epitranscriptome of small non-coding RNAs. Noncoding RNA Res. 2021;6(4):167-73. DOI: 10.1016/j.ncrna.2021.10.002

Cai Y, Yu X, Hu S, Yu J. A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics and Bioinformatics. 2009;7(4):147-54. DOI: 10.1016/S1672-0229(08)60044-3

Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64. DOI: 10.1186/s12943-018-0765-5

Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016-27. DOI: 10.1101/gad.1262504 PMID: 15574589

Zhan S, Wang Y, Chen X. RNA virus-encoded microRNAs: biogenesis, functions and perspectives on application. ExRNA. 2020;2(1):15. DOI: 10.1186/s41544-020-00056-z

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol. 2018;9. DOI: 10.3389/fendo.2018.00402

Yang J, Kongchan N, Primo Planta C, Neilson JR, Hirschi KD. The atypical genesis and bioavailability of the plant-based small RNA MIR2911: Bulking up while breaking down. Mol Nutr Food Res. 2017;61(9):1600974. DOI: 10.1002/mnfr.201600974

De Pellegrin ML, Rohrhofer A, Schuster P, Schmidt B, Peterburs P, Gessner A. The potential of herbal extracts to inhibit SARS-CoV-2: a pilot study. Clin Phytosci. 2021;7(1):29. DOI: 10.1186/s40816-021-00264-6

Schaefer LK, Parlange F, Buchmann G, Jung E, Wehrli A, Herren G, et al. Cross-Kingdom RNAi of Pathogen Effectors Leads to Quantitative Adult Plant Resistance in Wheat. Front Plant Sci. 2020;11. DOI: 10.3389/fpls.2020.00253

Jia M, He J, Bai W, Lin Q, Deng J, Li W, et al. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct. 2021;12(20):9549-62. DOI: 10.1039/d1fo01156a PMID: 34664582

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107-26. DOI: 10.1038/cr.2011.158 PMID: 21931358

Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25(1):39-49. DOI: 10.1038/cr.2014.130

Li X, Huang Y, Sun M, Ji H, Dou H, Hu J, et al. Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral Res. 2018;152:117-23. DOI: 10.1016/j.antiviral.2018.02.015

Zhou L-K, Zhou Z, Jiang X-M, Zheng Y, Chen X, Fu Z, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):54. DOI: 10.1038/s41421-020-00197-3 PMID: 32802404

Li M, Wang Y, Jin J, Dou J, Guo Q, Ke X, et al. Inhibitory Activity of Honeysuckle Extracts against Influenza A Virus In Vitro and In Vivo. Virologica Sinica. 2021;36(3):490-500. DOI: 10.1007/s12250-020-00302-6

Huang Y, Liu H, Sun X, Ding M, Tao G, Li X. Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene. J Neurovirol. 2019;25(4):457-63. DOI: 10.1007/s13365-019-00741-2

Li M, Wang Y, Jin J, Dou J, Guo Q, Ke X, et al. Inhibitory Activity of Honeysuckle Extracts against Influenza A Virus In Vitro and In Vivo. Virol Sin. 2021;36(3):490-500. DOI: 10.1007/s12250-020-00302-6 PMID: 33044658

McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses. 2021;13(3):522. DOI: 10.3390/v13030522 PMID: 33810083

Noda T. Native morphology of influenza virions. Frontiers in microbiology. 2012;2:269-. DOI: 10.3389/fmicb.2011.00269 PMID: 22291683

Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425-41. DOI: 10.1038/s41579-021-00542-7

Kesheh MM, Mahmoudvand S, Shokri S. Long noncoding RNAs in respiratory viruses: A review. Rev Med Virol. 2022;32(2):e2275. DOI: 10.1002/rmv.2275 PMID: 34252234

Mahmoudvand S, Shokri S. Interactions between SARS coronavirus 2 papain-like protease and immune system: A potential drug target for the treatment of COVID-19. Scand J Immunol. 2021;94(4):e13044. DOI: 10.1111/sji.13044 PMID: 33872387

. Organization WHO. Weekly Operational Update on COVID-19. 24 January 2020.

Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, et al. Covid-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. 2021.

Fujii Y. Quantum microRNA Assessment of COVID-19 RNA Vaccine: Hidden Potency of BNT162b2 SASR-CoV-2 Spike RNA as MicroRNA Vaccine. Adv Case Stud. 2021;3:552. DOI: 10.31031/AICS.2021.03.000552

Zhou Z, Zhou Y, Jiang X-M, Wang Y, Chen X, Xiao G, et al. Decreased HD-MIR2911 absorption in human subjects with the SIDT1 polymorphism fails to inhibit SARS-CoV-2 replication. Cell Discov. 2020;6(1):63. DOI: 10.1038/s41421-020-00206-5

Sun J, Liu C, Peng R, Zhang F-K, Tong Z, Liu S, et al. Cryo-EM structure of the varicella-zoster virus A-capsid. Nat Commun. 2020;11(1):4795. DOI: 10.1038/s41467-020-18537-y

Yang J, Liu J, Xing F, Ye H, Dai G, Liu M, et al. Nosocomial transmission of chickenpox and varicella zoster virus seroprevalence rate amongst healthcare workers in a teaching hospital in China. BMC Infect Dis. 2019;19(1):582. DOI: 10.1186/s12879-019-4222-x

Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, et al. Varicella zoster virus infection. Nat Rev Dis Primers. 2015;1(1):15016. DOI: 10.1038/nrdp.2015.16

Tombácz D, Prazsák I, Moldován N, Szűcs A, Boldogkői Z. Lytic Transcriptome Dataset of Varicella Zoster Virus Generated by Long-Read Sequencing. Front genet. 2018;9. DOI: 10.3389/fgene.2018.00460

Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The History of Enterovirus A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J Biomed Sci. 2019;26(1):75-. DOI: 10.1186/s12929-019-0573-2 PMID: 31627753

Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res. 2017;6(1):4-14. DOI: 10.7774/cevr.2017.6.1.4 PMID: 28168168

Lee KY. Enterovirus 71 infection and neurological complications. Korean J Pediatr. 2016;59(10):395-401. DOI: 10.3345/kjp.2016.59.10.395 PMID: 27826325

McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews. 2002;26(1):91-107. DOI: 10.1111/j.1574-6976.2002.tb00601.x

Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, et al. Enterovirus A71 Proteins: Structure and Function. Front Microbiol. 2018;9. DOI: 10.3389/fmicb.2018.00286

Wang H, Guo T, Yang Y, Yu L, Pan X, Li Y. Lycorine Derivative LY-55 Inhibits EV71 and CVA16 Replication Through Downregulating Autophagy. Front Cell Infect Microbiol. 2019;9. DOI: 10.3389/fcimb.2019.00277


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 © The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.