The Role of microRNA-2911 in control of viral infections

Shahab Mahmoudvand


MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in different mechanisms of gene regulation. Honeysuckle decoction (HD) extract has miRNA-2911 (miR-2911) and may be absorbed into the gastrointestinal (GI) system via SID transmembrane family member 1 (SIDT1) receptors. Several studies have shown inhibitory effects of miR-2911 on NA, PB2, and NS1 proteins of influenza virus (flu), VP1 of enterovirus 71 (EV71), IE62 of varicella-zoster virus (VZV), and SARS-COV-2 (SCOV-2) proliferation. MiRNA-2911 has the potential to change how these viruses are treated and controlled by employing herbal substances instead of chemical medications. This could be a new step in controlling viral infections but requires further studies.


miRNAs, miR-2911, honeysuckle, viral infection, herbal substances


Sun Y-M, Chen Y-Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol. 2020;13(1):109.

Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget. 2018;9(26):18648-63.

Li X, Peng J, Yi C. The epitranscriptome of small non-coding RNAs. Noncoding RNA Res. 2021;6(4):167-73.

Cai Y, Yu X, Hu S, Yu J. A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics and Bioinformatics. 2009;7(4):147-54.

Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64.

Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016-27.

Zhan S, Wang Y, Chen X. RNA virus-encoded microRNAs: biogenesis, functions and perspectives on application. ExRNA. 2020;2(1):15.

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol. 2018;9.

Yang J, Kongchan N, Primo Planta C, Neilson JR, Hirschi KD. The atypical genesis and bioavailability of the plant-based small RNA MIR2911: Bulking up while breaking down. Mol Nutr Food Res. 2017;61(9):1600974.

De Pellegrin ML, Rohrhofer A, Schuster P, Schmidt B, Peterburs P, Gessner A. The potential of herbal extracts to inhibit SARS-CoV-2: a pilot study. Clin Phytosci. 2021;7(1):29.

Schaefer LK, Parlange F, Buchmann G, Jung E, Wehrli A, Herren G, et al. Cross-Kingdom RNAi of Pathogen Effectors Leads to Quantitative Adult Plant Resistance in Wheat. Front Plant Sci. 2020;11.

Jia M, He J, Bai W, Lin Q, Deng J, Li W, et al. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct. 2021;12(20):9549-62.

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107-26.

Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25(1):39-49.

Li X, Huang Y, Sun M, Ji H, Dou H, Hu J, et al. Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral Res. 2018;152:117-23.

Zhou L-K, Zhou Z, Jiang X-M, Zheng Y, Chen X, Fu Z, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):54.

Li M, Wang Y, Jin J, Dou J, Guo Q, Ke X, et al. Inhibitory Activity of Honeysuckle Extracts against Influenza A Virus In Vitro and In Vivo. Virologica Sinica. 2021;36(3):490-500.

Huang Y, Liu H, Sun X, Ding M, Tao G, Li X. Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene. J Neurovirol. 2019;25(4):457-63.

Li M, Wang Y, Jin J, Dou J, Guo Q, Ke X, et al. Inhibitory Activity of Honeysuckle Extracts against Influenza A Virus In Vitro and In Vivo. Virologica Sinica. 2021;36(3):490-500.

McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses. 2021;13(3):522.

Noda T. Native morphology of influenza virions. Front Microbiol. 2012;2:269-.

Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425-41.

Kesheh MM, Mahmoudvand S, Shokri S. Long noncoding RNAs in respiratory viruses: A review. Reviews in medical virology. 2022;32(2):e2275.

Mahmoudvand S, Shokri S. Interactions between SARS coronavirus 2 papain-like protease and immune system: A potential drug target for the treatment of COVID-19. Scandinavian journal of immunology. 2021;94(4):e13044.

. Organization WHO. Weekly Operational Update on COVID-19. 24 January 2020.

Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, et al. Covid-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. 2021.

Fujii Y. Quantum microRNA Assessment of COVID-19 RNA Vaccine: Hidden Potency of BNT162b2 SASR-CoV-2 Spike RNA as MicroRNA Vaccine. Adv Case Stud. 2021;3:552.

Zhou Z, Zhou Y, Jiang X-M, Wang Y, Chen X, Xiao G, et al. Decreased HD-MIR2911 absorption in human subjects with the SIDT1 polymorphism fails to inhibit SARS-CoV-2 replication. Cell Discov. 2020;6(1):63.

Sun J, Liu C, Peng R, Zhang F-K, Tong Z, Liu S, et al. Cryo-EM structure of the varicella-zoster virus A-capsid. Nat Commun. 2020;11(1):4795.

Yang J, Liu J, Xing F, Ye H, Dai G, Liu M, et al. Nosocomial transmission of chickenpox and varicella zoster virus seroprevalence rate amongst healthcare workers in a teaching hospital in China. BMC Infect Dis. 2019;19(1):582.

Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, et al. Varicella zoster virus infection. Nat Rev Dis Primers. 2015;1(1):15016.

Tombácz D, Prazsák I, Moldován N, Szűcs A, Boldogkői Z. Lytic Transcriptome Dataset of Varicella Zoster Virus Generated by Long-Read Sequencing. Front genet. 2018;9.

Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The History of Enterovirus A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J Biomed Sci. 2019;26(1):75-.

Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clinical and experimental vaccine research. 2017;6(1):4-14.

Lee KY. Enterovirus 71 infection and neurological complications. Korean J Pediatr. 2016;59(10):395-401.

McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews. 2002;26(1):91-107.

Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, et al. Enterovirus A71 Proteins: Structure and Function. Front Microbiol. 2018;9.

Wang H, Guo T, Yang Y, Yu L, Pan X, Li Y. Lycorine Derivative LY-55 Inhibits EV71 and CVA16 Replication Through Downregulating Autophagy. Front Cell Infect Microbiol. 2019;9.


  • There are currently no refbacks.

Copyright (c) 2023 Shahab Mahmoudvand

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.