Prevalence and antibiotic resistance of uropathogens in children with urinary tract infections referring to Abuzar hospital in Ahvaz

Sousan Akrami1,2, Seyede Mahla Mavalizade2,3, Mehran Varnaseri Ghandali4, Aram Asareh Zadegan Dezfuli1, Zahra Farshadzadeh1, Arshid Yousefi Avarvand3,∗

1Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4Department of Infectious Diseases, Razi Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract
Urinary tract infection (UTI) is a prevalent disease among children. This study is an attempt to find the bacterial agents of UTI and antibiotic resistance in children. A descriptive cross-sectional study was carried out on 1316 clinical samples of children at Abuzar Hospital in Ahvaz that had positive urine culture. The strains were determined through biochemical tests and differential culture media. The pattern of antibiotic resistance of the studied strains was determined by the disk diffusion method. Out of the 1316 children surveyed, 821 were girls and 495 were boys. The most isolated strains from urine cultures were Escherichia coli (57.52%) followed by Enterococcus (12.15%). E. coli isolates demonstrated the highest resistance to ampicillin (57.06%) and amikacin was recognized as the most effective antibiotic with a sensitivity of 91.94%. E. coli was the most common causative agent of UTI in children. Amikacin was recognized as the appropriate choice against urinary tract pathogens. Because, in different regions and over time, the frequency distribution of antibiotic resistance varies, it is recommended to carry out periodic monitoring of antibiotic resistance for infection control.

Keywords: Urinary tract infection, Disc diffusion, Antibiotic resistance

1. Introduction
Urinary tract infections (UTIs), a common microbial infection, occurs at most ages, especially in children and infants [1]. These infections can be in the lower and upper urinary tract or both [2]. In general, UTI in females are more prevalent (3-5%) compared to males (1%); however, boys at one year of age are at higher risk of developing the infections [3, 4]. The UTI is a major cause of fever and referral to the emergency wards and hospitalization, especially in infants [5]. This disease can cause serious complications such as urinary disorders, uremia, high blood pressure, and even death [6]. About 150 million UTI occur worldwide each year. These infections are among the main reasons for admission to hospitals and also imposing medical costs in these centers [7].

The most common etiological cause of UTI is Escherichia coli [8], which can be due to the greater ability of this bacterium to bind to urinary tract cells, greater resistance to antibacterial properties of human serum, production of hemolysin, and increased production of capsule antigen [9]. Due to the high prevalence and serious complications, diagnosis and treatment of UTI in children are necessary as soon as
possible. Timely treatment with appropriate antibiotics before the urine culture and antibiogram results are very important in improving the patient and preventing kidney scarring and other complications [10]. In recent years, the overuse of common antibiotics has increased antibiotic resistance among urinary tract pathogens worldwide [10]. As a result, the most significant threat to public health is the issue of antibiotic-resistant bacteria, which can cause a high percentage of hospital deaths each year [11]. In Iran, the incidence of bacterial strains resistant to antibiotics in UTI is increasing and this issue is worrying [12]. It has been argued that local resistance to antibiotics should be assessed every five years for policy-making for the treatment of pediatric UTI [13]. This study aims to investigate the prevalence and profile of antibiotic resistance of bacterial agents isolated from children UTI of children admitted to Abuzar hospital in southwestern Iran.

2. Materials and Methods

This cross-sectional descriptive study was conducted from May 2020 to March 2021 on 1316 children admitted with UTI to Abuzar children’s hospital in southwestern Iran. This study only included cases who had not received antibiotic treatment before hospitalization. Samples were collected in a sterile container and sent to the laboratory. The samples were cultured using a standard loop (0.01 ml) under sterile conditions on blood agar and Eosin methylene blue (EMB) agar (Himedia, India). After 18-24 hours of incubation at 37°C, the culture media were evaluated for growth or lack of growth. Cultures with *Candida* growth were excluded. Gram-negative bacteria were identified by standard biochemical tests. Gram-positive microorganisms were identified with the corresponding laboratory tests: catalase, coagulase, and esculin agar (for enterococci).

The pattern of antimicrobial resistance of the studied strains was determined using the disc diffusion method by Mueller–Hinton medium (Himedia, India). According to the edge of the zone of growth inhibition encircling the discs, and based on Clinical and Laboratory Standards Institute (CLSI) recommendations [14], the results were classified as sensitive (S), intermediate-resistant (I) and, resistant (R). The antibiotics amikacin (AN, 30 μg), ampicillin (AM, 10 μg), ciprofloxacin (CP, 5 μg), gentamycin (GM, 10 μg), nitrofurantoin (FM, 300 μg), ceftriaxone (CRO, 30 μg), cefepime (FEP, 30 μg), erythromycin (E, 15 μg), imipenem (IMP, 10 μg), Cotrimoxazole (SXT, 1.25/23.75 μg), penicillin (P, 10 μg), cefoxitin (FOX, 30 μg), piperacillin-tazobactam (TZP, 100/10 μg), and CC (Clindamycin, 2 μg) (MAST Group Ltd., United Kingdom) were evaluated. For quality control of antibiogram steps in each series of experiments with clinical isolates, the sensitivity test was performed in the same way on the standard strains of *E. coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 25923, *Enterococcus faecalis* ATCC 29212 and the results were compared with standard values.

The results are shown as descriptive statistics in terms of relative frequency. The data were analyzed using the Chi-square test in SPSS software version 15. Statistical significance was considered as a P value <0.05.

![Figure 1. Distribution of isolated organisms in children with UTI](image)
3. Results

Out of 1316 children with positive urine culture, 821 (62.39%) were girls and 495 (37.61%) were boys. The rate of UTI was higher in girls than boys and the difference was significant (P < 0.05). The age of studied cases was up to 5 years old. The lowest incidence of UTI was observed in the age group under one year (n = 57, 4.33%).

The most prevalent strain isolated from urine cultures was *E. coli* (57.52%) and the lowest strain was related to *Citrobacter* spp. (0.15%) (Figure 1).

E. coli isolates showed the highest resistance (57.06%) to ampicillin. Amikacin was recognized as the most effective antibiotic with 91.94% sensitivity against *E. coli* isolates. Tables 1 and 2 shows the distribution of antibiotic resistance of isolated bacteria.

4. Discussion

Urinary tract infections are the most common nosocomial infections, followed by surgical site infections, and lower respiratory tract infections [15, 16].

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli (n=757)</th>
<th>Klebsiella (n=126)</th>
<th>P. aeruginosa (n=67)</th>
<th>Enterobacter (n=23)</th>
<th>Proteus (n=15)</th>
<th>Acinetobacter (n=4)</th>
<th>Citrobacter (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 559 (73.8%)</td>
<td>78 (61.9%)</td>
<td>-</td>
<td>9 (39.1%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I 1 (0.1%)</td>
<td>2 (1.5%)</td>
<td>-</td>
<td>1 (4.3%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 22 (2.9%)</td>
<td>8 (6.3%)</td>
<td>-</td>
<td>5 (21.7%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 696 (91.9%)</td>
<td>90 (71.4%)</td>
<td>59 (88%)</td>
<td>15 (65.2%)</td>
<td>2 (50 %)</td>
<td>15 (100 %)</td>
<td>2 (100 %)</td>
</tr>
<tr>
<td></td>
<td>I 5 (0.6%)</td>
<td>4 (3.1 %)</td>
<td>2 (2.9%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 22 (2.9%)</td>
<td>23 (18.2 %)</td>
<td>1 (1.4%)</td>
<td>9 (39.1%)</td>
<td>2 (50 %)</td>
<td>-</td>
<td>2 (100 %)</td>
</tr>
<tr>
<td>CRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 343 (45.3%)</td>
<td>69 (54.7 %)</td>
<td>-</td>
<td>12 (52.1 %)</td>
<td>-</td>
<td>14 (93.3 %)</td>
<td>2 (100 %)</td>
</tr>
<tr>
<td></td>
<td>I 101 (13.3%)</td>
<td>3 (2.3 %)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 302 (39.8%)</td>
<td>46 (36.5%)</td>
<td>-</td>
<td>12 (52.1%)</td>
<td>1 (6.6 %)</td>
<td>1 (50 %)</td>
<td>-</td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 577 (76.2%)</td>
<td>91 (72.2 %)</td>
<td>56 (83.5%)</td>
<td>14 (60.8%)</td>
<td>15 (100 %)</td>
<td>15 (100 %)</td>
<td>1 (50 %)</td>
</tr>
<tr>
<td></td>
<td>I 4 (0.5%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 113 (14.9%)</td>
<td>23 (18.2 %)</td>
<td>5 (7.4%)</td>
<td>8 (34.7%)</td>
<td>2 (50 %)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 72 (9.5%)</td>
<td>-</td>
<td>-</td>
<td>2 (8.6%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 432 (57%)</td>
<td>-</td>
<td>-</td>
<td>15 (65.2%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 678 (89.5%)</td>
<td>106 (84.1 %)</td>
<td>58 (86.5%)</td>
<td>23 (100%)</td>
<td>3 (75 %)</td>
<td>13 (86.6 %)</td>
<td>2 (100 %)</td>
</tr>
<tr>
<td></td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R 3 (0.3%)</td>
<td>2 (1.5%)</td>
<td>2 (2.9%)</td>
<td>-</td>
<td>1 (25 %)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S -</td>
<td>17 (13.4 %)</td>
<td>28 (41.7%)</td>
<td>6 (26%)</td>
<td>1 (25 %)</td>
<td>3 (20 %)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R -</td>
<td>2 (1.5%)</td>
<td>2 (2.9%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S -</td>
<td>-</td>
<td>5 (7.4%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R -</td>
<td>1 (0.7 %)</td>
<td>2 (2.9%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TZP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S -</td>
<td>-</td>
<td>16 (23.8%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R -</td>
<td>2 (2.9%)</td>
<td>-</td>
<td>1 (25 %)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Results estimated based on the number of tested/total isolates
AN; Amikacin, AM; Ampicillin, CP; Ciprofloxacin, GM; Gentamycin, FM; Nitrofurantoin, CRO; Ceftriaxone, FEP; Ceferpine, IMP; Imipenem, TZP; Piperacilla-tazobactam
Proper treatment for this type of infection first requires careful examination of the drug resistance of the infectious agents and then drug administration. According to research, the sex ratio varies with age and during the first trimester, UTI is more prevalent in boys than in girls [17]. Here, the girls had the highest prevalence of UTI.

In the present study, consistent with other research, the most isolated strain from urine cultures was *E. coli* (57.52%) [18-22]. However, by comparing the findings of this study with similar studies, we found differences in antibiotic resistance patterns in different regions.

Isolates of *E. coli, Proteus* and, *Enterobacter* were mostly resistant to ampicillin. Coagulase-negative staphylococci (CoNS) isolates were mostly resistant to erythromycin. It can be concluded that sensitivity to antibiotics has decreased due to irrational administration and use of drugs, enzymatic mutations, the transmission of resistance through genetic factors, and so on. Therefore, further studies in this field, decreasing the consumption of antibiotics, and promoting rational administration by physicians are essential.

Various microorganisms, such as *E. coli*, bind together to make a colonial tool that helps biofilms formation. Biofilms of microorganisms resist antimicrobial therapies. In a study by Valavi et al. in Ahvaz, Iran, *E. coli* was the most frequent pathogen isolated from children with UTI that showed the lowest resistance to nitrofurantoin [23]. In addition, Mehri et al. concluded that *E. coli* was the most isolated strain followed by *Enterococcus*; and nitrofurantoin and ceftriaxone were the antibiotics effective against bacterial agents [24]. These findings are important for the selection of effective antibiotic therapy. It should be noted that antibiotic resistance patterns may vary among different regions and populations.

Table 2. Distribution of antibiotic resistance among Gram-positive bacteria in children with UTI *

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Enterococcus (n=133)</th>
<th>Coagulase-negative (n=133)</th>
<th>Coagulase-positive (n=133)</th>
<th>Streptococcus (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>81 (60.9%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>2 (1.5%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>13 (9.7%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>13 (81.2%)</td>
<td>75 (56.3%)</td>
<td>3 (21.4%)</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>21 (15.7%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>68 (42.5%)</td>
<td>7 (43.7%)</td>
<td>93 (69.9%)</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>20 (12.5%)</td>
<td>2 (12.5%)</td>
<td>2 (1.5%)</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>72 (45%)</td>
<td>6 (37.5%)</td>
<td>30 (22.5%)</td>
<td>-</td>
</tr>
<tr>
<td>FOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>1 (6.2%)</td>
<td>3 (2.2%)</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>2 (1.5%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>3 (18.7%)</td>
<td>1 (0.7%)</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>5 (31.2%)</td>
<td>30 (22.5%)</td>
<td>2 (14.2%)</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>4 (25%)</td>
<td>-</td>
<td>2 (14.2%)</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>4 (25%)</td>
<td>-</td>
<td>1 (7.1%)</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>1 (6.2%)</td>
<td>-</td>
<td>1 (7.1%)</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (7.1%)</td>
</tr>
</tbody>
</table>

*Results estimated based on the number of tested/total isolates. SXT; Cotrimoxazole, CP; Ciprofloxacin, GM; Gentamicin, E; Erythromycin, P; Penicillin, FOX; Cefoxitin, CC; Clindamycin
are consistent with our work. Barzan et al. in Tehran reported that Proteus isolates, like the isolates of the our study, showed full susceptibility to gentamicin [25].

Because, in different regions and over time, the frequency distribution of antibiotic resistance varies, it is recommended to carry out periodic monitoring of antibiotic resistance to control infection. This study is the only study on the antibiotic profile of the causes of UTIs in children in Ahvaz over the past 10 years. Examination of uropathogenic agents in each region helps physicians to update their knowledge about the causative agents of UTI tract infections, their susceptibility to antibiotics, and selecting an appropriate experimental treatment.

In summary, E. coli was the most common causative agent of UTI in children. Amikacin was recognized as the appropriate choice against urinary tract pathogens. Because, in different regions and over time, the frequency distribution of antibiotic resistance varies, it is recommended to carry out periodic monitoring of antibiotic resistance for infection control. Also, a widespread screening program for UTI in children should be introduced in order to determine the exact prevalence and rate of resistance of uropathogens to widely used antibiotics.

Author contributions

Conception or design of the work AY, SA; Data collection: SMM; Data analysis and interpretation AAZ, ZF; Drafting the article: MV; Critical revision of the article: AY. All authors read and approved the final version of manuscript.

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical declarations

The study was approved by the Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (No. IR.AJUMS.REC.1399.297).

Financial Support

This work was supported by a grant number 99S30 from Vice Chancellor for Research, Ahvaz Jundishapur University of Medical Sciences.

References

16. Izadi N, Eshrat B, Etemad K, Mehrabi Y, Hashemi-Nazari SS. Rate of the incidence of hospital-acquired infections in Iran based...
on the data of the national nosocomial infections surveillance. New Microbes New Infect. 2020; 38:100768.

