Molecular mechanism linking sleep disturbances to neurodegenaration
DOI:
https://doi.org/10.61882/jcbior.6.2.322Keywords:
Sleep disturbances, Neurodegeneration, Neuroinflammation, Circadian rhythm, Oxidative stressAbstract
Sleep disturbances are increasingly recognized as both early indicators and potential contributors to the progression of neurodegenerative diseases. Disrupted sleep compromises glymphatic clearance and synaptic homeostasis, promoting the accumulation of neurotoxic proteins such as amyloid-β, tau, and α-synuclein. Concurrently, irregular sleep patterns and circadian rhythm disturbances activate neuroinflammatory pathways, including microglial activation, NF-κB signaling, and the NLR family pyrin domain containing 3 (NLRP3) inflammasome, thereby accelerating neuronal damage. Additional mechanisms, such as mitochondrial dysfunction, oxidative stress, and imbalances in neurotransmitter systems including orexin and melatonin, further reinforce the bidirectional relationship between sleep impairment and neurodegeneration. Despite these insights, critical gaps remain, particularly the absence of reliable biomarkers for simultaneously assessing sleep quality, neuroinflammation, and disease progression, as well as limited research on disorders beyond Alzheimer’s and Parkinson’s disease. Therapeutic strategies show promise, ranging from pharmacological interventions targeting inflammatory pathways to non-pharmacological approaches such as chronotherapy, light therapy, and cognitive behavioral therapy for insomnia. Emerging modalities, including RNA-based therapies targeting pathogenic proteins and artificial intelligence (AI) for early detection and personalized treatment of sleep abnormalities, offer novel opportunities for intervention. This narrative review explores the molecular mechanisms underlying sleep disturbances in neurodegenerative diseases, identifies critical gaps in current research, and discusses emerging therapeutic strategies aimed at mitigating sleep-related neurodegeneration.
References
1. Eugene AR, Masiak J. The Neuroprotective Aspects of Sleep. MEDtube Sci. 2015;3(1):35-40. PMID: 26594659
2. Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, et al. Sleep Deprivation and Neurological Disorders. Biomed Res Int. 2020;2020:5764017.
DOI: 10.1155/2020/5764017 PMID: 33381558
3. Simmonds E, Levine KS, Han J, Iwaki H, Koretsky MJ, Kuznetsov N, et al. Sleep disturbances as risk factors for neurodegeneration later in life. medRxiv. 2023:2023.11.08.23298037. DOI: 10.1101/2023.11.08.23298037 PMID: 37986827
4. Lv YN, Cui Y, Zhang B, Huang SM. Sleep deficiency promotes Alzheimer's disease development and progression. Front Neurol. 2022;13:1053942. DOI: 10.3389/fneur.2022.1053942
PMID: 36588906
5. Bezerra FS, Lanzetti M, Nesi RT, Nagato AC, Silva CP, Kennedy-Feitosa E, et al. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants. 2023;12(3):548. DOI: 10.3390/antiox12030548
6. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795-807. DOI: 10.1016/s0197-4580(02)00019-2 PMID: 12392783
7. Awang Daud DM, Ahmedy F, Baharuddin DMP, Zakaria ZA. Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Applied Sciences. 2022;12(18):9161. DOI: 10.3390/app12189161
8. Chen Z, Zhong C. Oxidative stress in Alzheimer's disease. Neurosci Bull. 2014;30(2):271-81. DOI: 10.1007/s12264-013-1423-y PMID: 24664866
9. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-91.
DOI: 10.3233/JPD-130230 PMID: 24252804
10. Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics. 2024;21(1):e00292.
DOI: 10.1016/j.neurot.2023.10.002 PMID: 38241161
11. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004-1008. DOI: 10.1126/science.aah4968 PMID: 27885006
12. Owen JE, Veasey SC. Impact of sleep disturbances on neurodegeneration: Insight from studies in animal models. Neurobiol Dis. 2020;139:104820.
DOI: 10.1016/j.nbd.2020.104820 PMID: 32087293
13. Rockstrom MD, Chen L, Taishi P, Nguyen JT, Gibbons CM, Veasey SC, et al. Tumor necrosis factor alpha in sleep regulation. Sleep Med Rev. 2018;40:69-78.
DOI: 10.1016/j.smrv.2017.10.005 PMID: 29153862
14. Songkhunawej P, Hofer MJ. Interleukin-6-induced neuroinflammation is exacerbated by subclinical levels of interferon-α. Front Neurosci. 2025;19:1586400.
DOI: 10.3389/fnins.2025.1586400 PMID: 40613088
15. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018;4:575-590. DOI: 10.1016/j.trci.2018.06.014 PMID: 30406177
16. Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna). 2018;125(5):781-795. DOI: 10.1007/s00702-017-1732-9
PMID: 28534174
17. Norden DM, Fenn AM, Dugan A, Godbout JP. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia. 2014;62(6):881-95. DOI: 10.1002/glia.22647
PMID: 24616125
18. Ding X, Yan Y, Li X, Li K, Ciric B, Yang J, et al. Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J Immunol. 2015;194(9):4251-64.
DOI: 10.4049/jimmunol.1303321 PMID: 25795755
19. Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci. 2024;16:1347987. DOI: 10.3389/fnagi.2024.1347987 PMID: 38681666
20. Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319(1):82-95. DOI: 10.1111/nyas.12458 PMID: 24840700
21. Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, et al. New insight into neurological degeneration: Inflammatory cytokines and blood-brain barrier. Front Mol Neurosci. 2022;15:1013933.
DOI: 10.3389/fnmol.2022.1013933 PMID: 36353359
22. Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci. 2022;14:873697. DOI: 10.3389/fnagi.2022.873697 PMID: 35547631
23. Liu H, Barthélemy NR, Ovod V, Bollinger JG, He Y, Chahin SL, et al. Acute sleep loss decreases CSF-to-blood clearance of Alzheimer's disease biomarkers. Alzheimers Dement. 2023;19(7):3055-3064.
DOI: 10.1002/alz.12930 PMID: 36695437
24. Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem. 2023;168(8):1475-1489. DOI: 10.1111/jnc.15883
25. Irwin MR. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol. 2019;19(11):702-715.
DOI: 10.1038/s41577-019-0190-z PMID: 31289370
26. Shen Y, Lv Q, Xie W, Gong S, Zhuang S, Liu J, et al. Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener. 2023;12:Article 8. DOI: 10.1186/s40035-023-00340-6
27. Ibrahim A, Högl B, Stefani A. The bidirectional relationship between sleep and neurodegeneration: Actionability to improve brain health. Clin Transl Neurosci. 2024;8(1):11.
DOI: 10.3390/ctn8010011
28. Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep. 2023;15:17-38. DOI: 10.2147/NSS.S201994 PMID: 36713640
29. Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, et al. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett. 2023;28(1):51.
DOI: 10.1186/s11658-023-00462-9 PMID: 37370025
30. Sharan L, Pal A, Babu SS, Kumar A, Banerjee S. Bay 11-7082 mitigates oxidative stress and mitochondrial dysfunction via NLRP3 inhibition in experimental diabetic neuropathy. Life Sci. 2024;359:123203.
DOI: 10.1016/j.lfs.2024.123203 PMID: 39486619
31. Epstein J, Docena G, MacDonald TT, Sanderson IR. Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1beta and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease. Br J Nutr. 2010;103(6):824-32.
DOI: 10.1017/S0007114509992510 PMID: 19878610
32. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31(18):6627-38. DOI: 10.1523/JNEUROSCI.0203-11.2011 PMID: 21543591
33. Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, et al. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol. 2015;77(4):637-654. DOI: 10.1002/ana.24361
34. Liu X, Baxley S, Hebron M, Turner RS, Moussa C. Resveratrol Attenuates CSF Markers of Neurodegeneration and Neuroinflammation in Individuals with Alzheimer's Disease. Int J Mol Sci. 2025;26(11):5044. DOI: 10.3390/ijms26115044 PMID: 40507855
35. Liu D, Zhang Q, Luo P, Gu L, Shen S, Tang H, et al. Neuroprotective Effects of Celastrol in Neurodegenerative Diseases-Unscramble Its Major Mechanisms of Action and Targets. Aging Dis. 2022;13(3):815-836.
DOI: 10.14336/AD.2021.1115 PMID: 35656110
36. Posey KL. Curcumin and Resveratrol: Nutraceuticals with so Much Potential for Pseudoachondroplasia and Other ER-Stress Conditions. Biomolecules. 2024;14(2):154.
DOI: 10.3390/biom14020154 PMID: 38397390
37. Kulsoom K, Ali W, Saba Z, Hussain S, Zahra S, Irshad M, et al. Revealing Melatonin's Mysteries: Receptors, Signaling Pathways, and Therapeutics Applications. Horm Metab Res. 2024;56(6):405-418.
DOI: 10.1055/a-2226-3971 PMID: 38081221
38. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, et al. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):317. DOI: 10.1038/s41419-019-1556-7
39. Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci. 2021;23(1):471. DOI: 10.3390/ijms23010471 PMID: 35008896
40. Wang Z, Sofer T. Recent Progress in Omics Studies of Sleep and Circadian Phenotypes. Curr Sleep Med Rep. 2025;11(1):17.
DOI: 10.1007/s40675-025-00335-x PMID: 40321983
41. Anthony K. RNA-based therapeutics for neurological diseases. RNA Biol. 2022;19(1):176-190.
DOI: 10.1080/15476286.2021.2021650 PMID: 35067193
42. Huang P, Zhang Z, Zhang P, Feng J, Xie J, Zheng Y, et al. TREM2 Deficiency Aggravates NLRP3 Inflammasome Activation and Pyroptosis in MPTP-Induced Parkinson's Disease Mice and LPS-Induced BV2 Cells. Mol Neurobiol. 2024;61(5):2590-2605. DOI: 10.1007/s12035-023-03713-0 PMID: 37917301
43. Zhang Y, Yu L, Lv Y, Yang T, Guo Q. Artificial intelligence in neurodegenerative diseases research: a bibliometric analysis since 2000. Front Neurol. 2025;16:1607924. DOI: 10.3389/fneur.2025.1607924 PMID: 40771972
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



