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Extended-spectrum beta-lactamases (ESBLs) are enzymes that resist beta-lactam antibiotics, 
including penicillins, cephalosporins, and carbapenems, and are produced by a variety of 
bacteria, including Escherichia coli and Klebsiella pneumoniae. Since ESBLs are often plasmid-
borne, antibiotic resistance can spread across bacteria due to their ease of transfer. The intricate 
structure of ESBLs changes based on the type of bacterium that produces them. However, they 
all share a beta-lactamase core structure. ESBLs act by hydrolyzing the beta-lactam ring of 
antibiotics thereby rendering them ineffective. Detection of ESBL-producing bacteria is very 
important for effective treatment of infections. These enzymes can be identified through various 
diagnostic methods, such as phenotypic tests and molecular assays. The most common 
diagnostic method is an antimicrobial susceptibility test, which involves testing bacterial 
sensitivity to different antibiotics. Furthermore, the use of molecular testing techniques like 
polymerase chain reaction is growing in the identification of ESBLs. This paper provides a 
summary of ESBLs, including their structure, function, and diagnostic methods. Thus, it is 
critical to comprehend ESBLs in order to create therapies that effectively address illnesses 
brought on by bacteria that produce ESBL. 
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1. Introduction 
Antibiotics from the beta-lactam family are some of 

the most widely used and efficient medications for the 
treatment of infectious diseases. Regretfully, 
microorganisms now have a variety of defensive 
mechanisms against these medications. One of the 
primary mechanisms of resistance is the production of 
beta-lactamase, which hydrolyzes the beta-lactam ring 
and renders the medication inactive [1]. Beta-lactamase 
enzymes hydrolyze cephalosporins, penicillins, 
monobactams, and carbapenems, thereby inactivating 
them. Extended-spectrum beta-lactamases (ESBLs) 
were discovered in the early 1980s and are a novel class 
of enzymes that hydrolyze penicillins and extended-
spectrum cephalosporins. ESBLs are a group of 
enzymes that were primarily identified in members of 
the Enterobacteriaceae family, namely Klebsiella 
pneumoniae, isolated from patients hospitalized in 
special care units and later in the community. 
Additionally, certain Gram-negative bacteria, including 
Pseudomonas aeruginosa and Acinetobacter 
baumannii, have also been shown to produce these 
enzymes [2-4]. Antimicrobial resistance in Escherichia 
coli has increased recently as a result of the careless and 
indiscriminate use of beta-lactam antibiotics. ESBL 
production by E. coli is considered a major concern in 
both human and animal populations because it leads to 
infections that are difficult to treat [5,6]. ESBLs have 
several classification types, the most common of which 
globally are Cefotaximase (CTX-M), Sulfhydryl 
variable (SHV), and Temoneira (TEM) [7].  

The aim of this study is to review and evaluate the 
characteristics, roles, and detection methods of ESBL 
enzymes produced by bacteria. This research 
investigates the resistance mechanisms these enzymes 
employ against antibiotics and emphasizes the 
importance of their rapid detection for effective 
treatment of infections. Furthermore, the study 
addresses the obstacles and challenges in controlling 
antibiotic resistance and contributes to improved 
management of diseases caused by resistant bacteria by 
providing comprehensive knowledge on the structure, 
classification, and diagnostic techniques of ESBLs.  

2. The evolution and genetic diversity of 
ESBLs 

Beta-lactams account for 60% of all antibiotics 
produced and are the most widely used class of 
antibiotics due to their high tolerability and broad 
spectrum of activity [8,9]. Enzymes known as ESBLs 
are encoded by chromosomal and plasmid-borne genes 
and are produced by pathogens that exhibit resistance to 
aztreonam, penicillins, and oxyimino-cephalosporins. 
These enzymes are inhibited by clavulanic acid [10]. 
The most prevalent ESBL genes in human and animal 
Gram-negative bacteria include blaTEM, blaCTX-M, 
blaOXA, and blaSHV, primarily carried by E. coli and K. 

pneumoniae in healthcare settings. The emergence and 
spread of these genes represent a major concern in 
antimicrobial resistance [11,12]. The 
pharmacokinetic/pharmacodynamic (PK/PD) indices 
determine the bactericidal activity of beta-lactams [13]. 
The Ambler classification system classifies beta-
lactamases into four classes based on amino acid 
sequence: class A (serine penicillinases), class B 
(metallo-beta-lactamases), class C (cephalosporinases), 
and class D (oxacillinases). Antibiotic resistance is 
mainly caused by a group of beta-lactamase-producing 
genes that include ESBLs, AmpC beta-lactamases, and 
carbapenemases [14]. In the Bush-Jacoby-Medeiros 
classification system, beta-lactamases are divided into 
three groups: cephalosporinases, serine beta-lactamases, 
and metallo-β-lactamases. However, the Ambler system 
is more widely used due to its simplicity [15]. 
Epidemiological studies indicate that the prevalence of 
ESBL-producing bacteria such as K. pneumoniae and E. 
coli is substantially higher in Asia compared to other 
regions globally, with China exhibiting the highest rate 
of ESBL production in E. coli isolates worldwide [16]. 
CTX-M beta-lactamases are the most widespread type, 
with their genes originating from the chromosome of 
genus Kluyvera. This genetic diversity enables 
hydrolysis of a broader range of cephalosporins. 
Although early CTX-M variants primarily hydrolyzed 
cefotaxime, over 60% of current isolates now also 
possess the ability to efficiently hydrolyze ceftazidime 
[17]. Among global ESBL isolates, CTX-M-2, CTX-M-
3, and CTX-M-14 enzymes are the most prevalent, 
particularly among cephalosporin-resistant K. 
pneumoniae and E. coli strains [18]. TEM beta-
lactamase is a key enzyme responsible for up to 90% of 
ampicillin resistance in E. coli, functioning through 
hydrolysis of the beta-lactam ring. This enzyme has 
evolved via point mutations at specific amino acid 
residues, with over 170 variants reported to date. While 
TEM confers resistance to penicillins and early 
cephalosporins, it can be inhibited by clavulanic acid. 
Global studies indicate that the blaTEM gene is present in 
approximately 73% of ESBL-positive samples, with 
bacteriophages playing a significant role in its 
transmission [19-21]. SHV enzymes, encoded by the 
blaSHV gene, are key mediators of penicillin resistance. 
The type 2b variants hydrolyze penicillins and 
cephalosporins, whereas types 2be and 2br have 
developed resistance to inhibition by clavulanic acid and 
tazobactam [17,22]. Oxacillinases (OXA), classified as 
class D carbapenemases, are frequently isolated from A. 
baumannii. This group is largely resistant to inhibition 
by clavulanic acid, a common characteristic. Although 
resistance to ceftazidime is rare among OXA enzymes, 
the OXA-17 variant exhibits greater resistance to 
cefixime and cefotaxime [23].  

Rare ESBL variants such as integron-borne 
cephalosporinase-1 (IBC-1), Tlaloc-1 (TLA-1), Brazil 
extended-spectrum β-lactamase-1 (BES-1), and Serratia 
fonticola-1 (SFO-1) have been identified only in certain 
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members of the Enterobacteriaceae family. Research 
on other ESBLs has primarily focused on specific 
isolates of P. aeruginosa from limited geographic 
regions [24]. 

3. Mechanism of action of beta-lactam 
antibiotics 

Mechanisms of antibiotic resistance include 
hydrolysis, redox processes, chemical group transfer, 
and modification of antibiotic target molecules. 
Hydrolytic enzymes can disrupt antibiotic activity by 
targeting and cleaving chemical bonds, while redox 
processes involve the oxidation or reduction of 
antibiotics [25]. Beta-lactam antibiotics inhibit bacterial 
transpeptidases, known as penicillin-binding proteins 
(PBPs), thereby preventing the cross-linking of 
peptidoglycan in the cell wall. By compromising PBPs, 
these antibiotics weaken the bacterial cell wall, leading 
to impaired growth and division, and reduced resistance 
to environmental stresses. The inhibitory activity of 
penicillin and other beta-lactam antibiotics is based on 
structural, geometric, and stereochemical similarities 
[26,27]. The target of these antibiotics is peptidoglycan, 
a macromolecule that covers the cytoplasmic membrane 
and provides structural stability to bacteria. 
Peptidoglycan is composed of glycan chains made of 
two alternating amino sugars, N-acetylglucosamine and 
N-acetylmuramic acid (NAM). These linear chains are 
cross-linked to each other by short peptide chains 
[28,29]. Because the beta-lactam ring mimics the 
structure of the D-alanine-D-alanine terminus of the 

peptidoglycan peptide chain, beta-lactam antibiotics 
bind to PBPs. Beta-lactam antibiotics bind irreversibly 
to PBPs by mimicking this peptide structure, blocking 
their transpeptidase activity and preventing the 
formation of new cross-links in the peptidoglycan layer. 
This inhibition suppresses new cell wall formation, 
thereby weakening the existing bacterial cell wall. At 
the same time, autolysis of peptidoglycan takes place. 
This degradation leads to increased permeability and 
ultimately cell lysis [30,31] (Figure 1). 

4. Diagnostic approaches to ESBLs 
identification  

Methods for detecting beta-lactamase enzymes can be 
divided into phenotypic and genotypic categories. 
Phenotypic methods include double-disk synergy, 
gradient strip testing, and broth dilution [15]. These 
methods, particularly for ESBL identification, work by 
detecting synergistic interactions between beta-lactam 
drugs and specific enzyme inhibitors [32]. The 
combined disk test, typically performed using the disk 
diffusion method, is important for the accurate detection 
of ESBL enzymes in clinical laboratories. A key 
disadvantage of this method, however, is its lack of 
potential for automation. The Clinical and Laboratory 
Standards Institute (CLSI) has established the disk 
diffusion method as the standard for identifying ESBL 
production in E. coli, K. pneumoniae, and K. oxytoca 
[33]. Furthermore, the CLSI has developed a dilution-
based antimicrobial susceptibility test to screen for 
ESBL production in E. coli and Klebsiella spp.  

 
Figure 1. Mechanism of action of beta-lactam antibiotics and bacterial resistance via ESBL production. Beta-lactam antibiotics (e.g., penicillins, 
cephalosporins) inhibit bacterial cell wall synthesis by binding to PBPs, preventing cross-linking of peptidoglycan strands and leading to cell lysis. 
ESBLs confer resistance by hydrolyzing the beta-lactam ring, rendering the antibiotics ineffective. (NAM: N-acetylmuramic acid, NAG: N-
acetylglucosamine, PG: Peptidoglycan). 
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This method uses ceftriaxone, ceftazidime, 
aztreonam, or cefotaxime at a screening concentration 
of 1 μg/ml [34-36]. Thin-layer chromatography is 
another rapid and simple technique for detecting beta-
lactamases in clinical samples and evaluating their 
activity against various beta-lactam antibiotics, 
including carbapenems [37]. For confirmation, 
genotypic analysis of potential ESBL-producing strains 
is a promising alternative [38]. Molecular assays, such 
as polymerase chain reaction (PCR), real-time PCR, and 
microarrays, can identify carbapenemase-encoding 
genes. However, their dependence on expensive 
equipment and specialized technical expertise limits 
their adoption in resource-limited settings, particularly 
in low- and middle-income countries [39]. 

5. Emerging therapies and future prospects 
for overcoming ESBLs resistance  

Carbapenems are the mainstay of treatment for 
infections caused by ESBL-producing bacteria. 
Intravenous administration is more effective than oral, 
but misuse and overuse have contributed to increased 
carbapenem resistance [40]. The US Food and Drug 
Administration has approved four drug combinations 
for clinical use against certain infections caused by 
Gram-negative pathogens: ceftolozane-tazobactam, 
ceftazidime-avibactam, meropenem-vaborbactam, and 
imipenem-cilastatin-relebactam [41]. Additionally, new 
beta-lactamase inhibitors in clinical use include 
cefepime/enmetazobactam, aztreonam/avibactam, and 
sulbactam/durlobactam. Among these, 
cefepime/enmetazobactam is particularly effective 
against P. aeruginosa and ESBL-producing 
Enterobacteriaceae [42]. Nanotechnology, clustered 
regularly interspaced short palindromic repeats 
(CRISPR) systems, and phage therapy are examples of 
emerging technologies that address the key limitations 
of conventional antibiotics while enhancing traditional 
discovery approaches [43]. 

5.1 Nanotechnology-based approaches 

Nanoparticles (or nanobiotics), owing to their unique 
electrical, magnetic, and binding properties, represent a 
promising strategy for fighting resistant infections. 
They function either directly as nanobactericides or as 
smart nanocarriers for the targeted delivery of 
established antibiotics [44]. Nanoantibiotics 
(nanoparticles with inherent antibacterial activity) 
improve the efficacy and safety of antibiotic therapies. 
Their advantages include an increased drug half-life, 
sustained effective concentration at the target site, a 
reduced dosing frequency, and minimized side effects 
[45].  

Nanoparticles such as gold nanoparticles are 
emerging as an advanced and novel approach to treating 
infections caused by ESBL-producing bacteria. Due to 
their ability to deliver antibiotics specifically to resistant 

strains and their multiple antibacterial mechanisms like 
biofilm inhibition, cell wall disruption, and induction of 
oxidative stress, they represent a promising strategy for 
combating antibiotic resistance [46]. 

5.2 Phage therapy 

Phage therapy has also been extensively studied as a 
treatment for infections caused by antibiotic-resistant 
bacteria and is considered a promising alternative to 
traditional therapies for this major public health 
challenge. This approach is rapidly gaining attention in 
research [47]. Bacteriophages are diverse and abundant 
viruses with effective bactericidal properties. 
According to a recent study, the lytic bacteriophages 
EC.W1-9 and EC.W15-4 show high therapeutic 
potential against the global threat of ESBL-producing 
E. coli isolates [48].  

Phages attach to specific receptors on bacterial cells, 
inject their genetic material, and initiate a lytic 
replication cycle. They can also integrate their genetic 
material into the bacterial genome, replicating as the 
bacterial cell divides [49]. For therapeutic research and 
clinical applications, non-lysogenic phages and wild-
type or engineered lytic phages are employed. The 
emergence of strains resistant to both phages and 
antibiotics is mitigated through phage-antibiotic 
therapy [50].  

Moreover, to counter phage-resistant bacteria, the use 
of phage cocktails is essential. However, before this 
approach can be widely adopted in therapy, several 
challenges must be addressed, including the limited 
host range of phages, systemic side effects, phage 
resistance, rapid clearance of phages by the immune 
system, issues in phage delivery, and challenges in 
phage production [51]. 

5.3 CRISPR-Cas systems  

The CRISPR-Cas system is an adaptive immune 
system found in bacteria and archaea. In 2012, it was 
demonstrated that the Cas9 protein could be 
programmed to cleave DNA at specific sites, 
transforming it into a precise tool for genome editing in 
agriculture and medicine. This system holds the 
potential to target genetic resistance determinants, 
offering a precise alternative for controlling Gram-
negative bacteria [52]. The number of CRISPR loci per 
genome can vary, but the most effective system is 
CRISPR-Cas9, as it utilizes all major biological 
molecules: protein, RNA, and DNA and offers greater 
customizability and flexibility [53].  

Differences in CRISPR loci among bacterial species 
influence the efficacy of CRISPR-Cas systems. To 
ensure the safety and precision of these systems in 
clinical settings, issues such as improving delivery 
strategies and mitigating off-target effects must still be 
resolved [54]. Several studies have demonstrated that 
CRISPR-Cas systems can be engineered into probiotic 
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bacteria to specifically target and destroy pathogenic or 
drug-resistant bacteria or eliminate antimicrobial 
resistance genes [55].  

The CRISPR-Cas targeting system effectively 
combats antibiotic resistance by selectively inactivating 
genes involved in biofilm formation, pathogenesis, 
virulence, or bacterial survival through chromosomal 
gene cleavage or plasmid elimination [56]. Furthermore, 
the CRISPR-Cas system is used alongside other tools to 
enable easier, more specific, and more sensitive 
detection of bacterial infections from samples [57]. 

6. Conclusion 
Today, we are witnessing increasing bacterial 

resistance and infections caused by them in the world. 
One of the most pressing issues in the management of 
illnesses brought on by these bacteria is this issue. The 
rapid transmission and spread of organisms capable of 
producing the aforementioned enzymes has caused an 
increase in hospital-related infections around the world. 
ESBL has grown a lot over the past years. Its generating 
genes can be spread between bacteria through plasmid 
transfer.  

Researchers face challenges in detecting ESBLs in 
clinical microbiology labs, requiring control of drug use, 
monitoring of treatment strains, enzyme detection tests, 
and the use of appropriate antibiotics to prevent 
resistance. Therefore, combating ESBL and other 
antimicrobial resistance requires adopting novel 
strategies including next-generation beta-lactamase 
inhibitors, nanoparticle-based therapies, engineered 
CRISPR-Cas systems, and phage therapy. These 
approaches show significant promise but demand 
rigorous research and innovative implementation to 
mitigate the global burden of drug-resistant infections 
and improve treatment outcomes. 
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