J Current Biomed Report 2025, Volume 6, Number 3

ISSN: 2717-1906 Review Paper

Targeted mechanisms and novel therapeutic
strategies against extended-spectrum beta-
lactamases: From precise detection to intelligent
management of bacterial resistance

Abolfazl Jafari-Sales?, Aylin Golestani*?, Zahra Ghahremani>*, Mohammadmahdi Salek-Faramarzi®?,

Mehrdad Pashazadeh>*”, Aram Asareh Zadegan Dezfuli’

1. Department of Microbiology, Kaz.C., Islamic Azad University, Kazerun, Iran
2. Infectious Diseases Research Center, TaMS.C., Islamic Azad University, Tabriz, Iran
3. Department of Cellular and Molecular Biology, Ta.C., Islamic Azad University, Tabriz, Iran
4. Department of Laboratory Sciences and Microbiology, TaMS.C., Islamic Azad University, Tabriz, Iran
5. Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

ABSTRACT

Article info: Extended-spectrum beta-lactamases (ESBLs) are enzymes that resist beta-lactam antibiotics,
ﬁiﬁﬁ;ﬁﬁi 722A;§ng§§5 includ'ing' penigillins, cephalosporins, and carbapenems, and are produced by a variety .Of
bacteria, including Escherichia coli and Klebsiella pneumoniae. Since ESBLs are often plasmid-
borne, antibiotic resistance can spread across bacteria due to their ease of transfer. The intricate
structure of ESBLs changes based on the type of bacterium that produces them. However, they

Keywords: all share a beta-lactamase core structure. ESBLs act by hydrolyzing the beta-lactam ring of
Antibiotic resistance antibiotics thereby rendering them ineffective. Detection of ESBL-producing bacteria is very
ﬁ:gflr;:tl ;;lf::;"’"s important for effective treatment of infections. These enzymes can be identified through various
Epidemiology diagnostic methods, such as phenotypic tests and molecular assays. The most common
Diagnosis diagnostic method is an antimicrobial susceptibility test, which involves testing bacterial

sensitivity to different antibiotics. Furthermore, the use of molecular testing techniques like
polymerase chain reaction is growing in the identification of ESBLs. This paper provides a
summary of ESBLs, including their structure, function, and diagnostic methods. Thus, it is
critical to comprehend ESBLs in order to create therapies that effectively address illnesses
brought on by bacteria that produce ESBL.
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1. Introduction

Antibiotics from the beta-lactam family are some of
the most widely used and efficient medications for the
treatment of infectious diseases. Regretfully,
microorganisms now have a variety of defensive
mechanisms against these medications. One of the
primary mechanisms of resistance is the production of
beta-lactamase, which hydrolyzes the beta-lactam ring
and renders the medication inactive [1]. Beta-lactamase
enzymes hydrolyze cephalosporins, penicillins,
monobactams, and carbapenems, thereby inactivating
them. Extended-spectrum beta-lactamases (ESBLs)
were discovered in the early 1980s and are a novel class
of enzymes that hydrolyze penicillins and extended-
spectrum cephalosporins. ESBLs are a group of
enzymes that were primarily identified in members of
the Enterobacteriaceae family, namely Klebsiella
pneumoniae, isolated from patients hospitalized in
special care units and later in the community.
Additionally, certain Gram-negative bacteria, including
Pseudomonas  aeruginosa  and  Acinetobacter
baumannii, have also been shown to produce these
enzymes [2-4]. Antimicrobial resistance in Escherichia
coli has increased recently as a result of the careless and
indiscriminate use of beta-lactam antibiotics. ESBL
production by E. coli is considered a major concern in
both human and animal populations because it leads to
infections that are difficult to treat [5,6]. ESBLs have
several classification types, the most common of which
globally are Cefotaximase (CTX-M), Sulfhydryl
variable (SHV), and Temoneira (TEM) [7].

The aim of this study is to review and evaluate the
characteristics, roles, and detection methods of ESBL
enzymes produced by bacteria. This research
investigates the resistance mechanisms these enzymes
employ against antibiotics and emphasizes the
importance of their rapid detection for effective
treatment of infections. Furthermore, the study
addresses the obstacles and challenges in controlling
antibiotic resistance and contributes to improved
management of diseases caused by resistant bacteria by
providing comprehensive knowledge on the structure,
classification, and diagnostic techniques of ESBLs.

2. The evolution and genetic diversity of
ESBLs

Beta-lactams account for 60% of all antibiotics
produced and are the most widely used class of
antibiotics due to their high tolerability and broad
spectrum of activity [8,9]. Enzymes known as ESBLs
are encoded by chromosomal and plasmid-borne genes
and are produced by pathogens that exhibit resistance to
aztreonam, penicillins, and oxyimino-cephalosporins.
These enzymes are inhibited by clavulanic acid [10].
The most prevalent ESBL genes in human and animal
Gram-negative bacteria include blatem, blactxwm,
blaoxa, and blasuv, primarily carried by E. coli and K.
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pneumoniae in healthcare settings. The emergence and
spread of these genes represent a major concern in
antimicrobial resistance [11,12]. The
pharmacokinetic/pharmacodynamic (PK/PD) indices
determine the bactericidal activity of beta-lactams [13].
The Ambler classification system classifies beta-
lactamases into four classes based on amino acid
sequence: class A (serine penicillinases), class B
(metallo-beta-lactamases), class C (cephalosporinases),
and class D (oxacillinases). Antibiotic resistance is
mainly caused by a group of beta-lactamase-producing
genes that include ESBLs, AmpC beta-lactamases, and
carbapenemases [14]. In the Bush-Jacoby-Medeiros
classification system, beta-lactamases are divided into
three groups: cephalosporinases, serine beta-lactamases,
and metallo-B-lactamases. However, the Ambler system
is more widely used due to its simplicity [15].
Epidemiological studies indicate that the prevalence of
ESBL-producing bacteria such as K. pneumoniae and E.
coli is substantially higher in Asia compared to other
regions globally, with China exhibiting the highest rate
of ESBL production in E. coli isolates worldwide [16].
CTX-M beta-lactamases are the most widespread type,
with their genes originating from the chromosome of
genus Kluyvera. This genetic diversity enables
hydrolysis of a broader range of cephalosporins.
Although early CTX-M variants primarily hydrolyzed
cefotaxime, over 60% of current isolates now also
possess the ability to efficiently hydrolyze ceftazidime
[17]. Among global ESBL isolates, CTX-M-2, CTX-M-
3, and CTX-M-14 enzymes are the most prevalent,
particularly ~ among  cephalosporin-resistant K.
pneumoniae and E. coli strains [18]. TEM beta-
lactamase is a key enzyme responsible for up to 90% of
ampicillin resistance in E. coli, functioning through
hydrolysis of the beta-lactam ring. This enzyme has
evolved via point mutations at specific amino acid
residues, with over 170 variants reported to date. While
TEM confers resistance to penicillins and early
cephalosporins, it can be inhibited by clavulanic acid.
Global studies indicate that the blatem gene is present in
approximately 73% of ESBL-positive samples, with
bacteriophages playing a significant role in its
transmission [19-21]. SHV enzymes, encoded by the
blasuv gene, are key mediators of penicillin resistance.
The type 2b variants hydrolyze penicillins and
cephalosporins, whereas types 2be and 2br have
developed resistance to inhibition by clavulanic acid and
tazobactam [17,22]. Oxacillinases (OXA), classified as
class D carbapenemases, are frequently isolated from A.
baumannii. This group is largely resistant to inhibition
by clavulanic acid, a common characteristic. Although
resistance to ceftazidime is rare among OXA enzymes,
the OXA-17 variant exhibits greater resistance to
cefixime and cefotaxime [23].

Rare ESBL variants such as integron-borne
cephalosporinase-1 (IBC-1), Tlaloc-1 (TLA-1), Brazil
extended-spectrum B-lactamase-1 (BES-1), and Serratia
fonticola-1 (SFO-1) have been identified only in certain
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members of the Enterobacteriaceae tfamily. Research
on other ESBLs has primarily focused on specific
isolates of P. aeruginosa from limited geographic
regions [24].

3. Mechanism of action of beta-lactam
antibiotics

Mechanisms of antibiotic resistance include
hydrolysis, redox processes, chemical group transfer,
and modification of antibiotic target molecules.
Hydrolytic enzymes can disrupt antibiotic activity by
targeting and cleaving chemical bonds, while redox
processes involve the oxidation or reduction of
antibiotics [25]. Beta-lactam antibiotics inhibit bacterial
transpeptidases, known as penicillin-binding proteins
(PBPs), thereby preventing the cross-linking of
peptidoglycan in the cell wall. By compromising PBPs,
these antibiotics weaken the bacterial cell wall, leading
to impaired growth and division, and reduced resistance
to environmental stresses. The inhibitory activity of
penicillin and other beta-lactam antibiotics is based on
structural, geometric, and stereochemical similarities
[26,27]. The target of these antibiotics is peptidoglycan,
a macromolecule that covers the cytoplasmic membrane
and provides structural stability to bacteria.
Peptidoglycan is composed of glycan chains made of
two alternating amino sugars, N-acetylglucosamine and
N-acetylmuramic acid (NAM). These linear chains are
cross-linked to each other by short peptide chains
[28,29]. Because the beta-lactam ring mimics the
structure of the D-alanine-D-alanine terminus of the
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peptidoglycan peptide chain, beta-lactam antibiotics
bind to PBPs. Beta-lactam antibiotics bind irreversibly
to PBPs by mimicking this peptide structure, blocking
their transpeptidase activity and preventing the
formation of new cross-links in the peptidoglycan layer.
This inhibition suppresses new cell wall formation,
thereby weakening the existing bacterial cell wall. At
the same time, autolysis of peptidoglycan takes place.
This degradation leads to increased permeability and
ultimately cell lysis [30,31] (Figure 1).

4. Diagnostic ESBLs

identification

approaches to

Methods for detecting beta-lactamase enzymes can be
divided into phenotypic and genotypic categories.
Phenotypic methods include double-disk synergy,
gradient strip testing, and broth dilution [15]. These
methods, particularly for ESBL identification, work by
detecting synergistic interactions between beta-lactam
drugs and specific enzyme inhibitors [32]. The
combined disk test, typically performed using the disk
diffusion method, is important for the accurate detection
of ESBL enzymes in clinical laboratories. A key
disadvantage of this method, however, is its lack of
potential for automation. The Clinical and Laboratory
Standards Institute (CLSI) has established the disk
diffusion method as the standard for identifying ESBL
production in E. coli, K. pneumoniae, and K. oxytoca
[33]. Furthermore, the CLSI has developed a dilution-
based antimicrobial susceptibility test to screen for
ESBL production in E. coli and Klebsiella spp.
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Figure 1. Mechanism of action of beta-lactam antibiotics and bacterial resistance via ESBL production. Beta-lactam antibiotics (e.g., penicillins,
cephalosporins) inhibit bacterial cell wall synthesis by binding to PBPs, preventing cross-linking of peptidoglycan strands and leading to cell lysis.
ESBLs confer resistance by hydrolyzing the beta-lactam ring, rendering the antibiotics ineffective. (NAM: N-acetylmuramic acid, NAG: N-

acetylglucosamine, PG: Peptidoglycan).
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This method uses ceftriaxone, ceftazidime,
aztreonam, or cefotaxime at a screening concentration
of 1 pg/ml [34-36]. Thin-layer chromatography is
another rapid and simple technique for detecting beta-
lactamases in clinical samples and evaluating their
activity against various beta-lactam antibiotics,
including carbapenems [37]. For confirmation,
genotypic analysis of potential ESBL-producing strains
is a promising alternative [38]. Molecular assays, such
as polymerase chain reaction (PCR), real-time PCR, and
microarrays, can identify carbapenemase-encoding
genes. However, their dependence on expensive
equipment and specialized technical expertise limits
their adoption in resource-limited settings, particularly
in low- and middle-income countries [39].

5. Emerging therapies and future prospects
for overcoming ESBLs resistance

Carbapenems are the mainstay of treatment for
infections caused by ESBL-producing bacteria.
Intravenous administration is more effective than oral,
but misuse and overuse have contributed to increased
carbapenem resistance [40]. The US Food and Drug
Administration has approved four drug combinations
for clinical use against certain infections caused by
Gram-negative pathogens: ceftolozane-tazobactam,
ceftazidime-avibactam, meropenem-vaborbactam, and
imipenem-cilastatin-relebactam [41]. Additionally, new
beta-lactamase inhibitors in clinical use include
cefepime/enmetazobactam, aztreonam/avibactam, and
sulbactam/durlobactam. Among these,
cefepime/enmetazobactam is particularly effective
against P.  aeruginosa and  ESBL-producing
Enterobacteriaceae [42]. Nanotechnology, clustered
regularly interspaced short palindromic repeats
(CRISPR) systems, and phage therapy are examples of
emerging technologies that address the key limitations
of conventional antibiotics while enhancing traditional
discovery approaches [43].

5.1 Nanotechnology-based approaches

Nanoparticles (or nanobiotics), owing to their unique
electrical, magnetic, and binding properties, represent a
promising strategy for fighting resistant infections.
They function either directly as nanobactericides or as
smart nanocarriers for the targeted delivery of
established antibiotics [44]. Nanoantibiotics
(nanoparticles with inherent antibacterial activity)
improve the efficacy and safety of antibiotic therapies.
Their advantages include an increased drug half-life,
sustained effective concentration at the target site, a
reduced dosing frequency, and minimized side effects
[45].

Nanoparticles such as gold nanoparticles are
emerging as an advanced and novel approach to treating
infections caused by ESBL-producing bacteria. Due to
their ability to deliver antibiotics specifically to resistant
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strains and their multiple antibacterial mechanisms like
biofilm inhibition, cell wall disruption, and induction of
oxidative stress, they represent a promising strategy for
combating antibiotic resistance [46].

5.2 Phage therapy

Phage therapy has also been extensively studied as a
treatment for infections caused by antibiotic-resistant
bacteria and is considered a promising alternative to
traditional therapies for this major public health
challenge. This approach is rapidly gaining attention in
research [47]. Bacteriophages are diverse and abundant
viruses with effective bactericidal properties.
According to a recent study, the lytic bacteriophages
EC.WI1-9 and EC.WI15-4 show high therapeutic
potential against the global threat of ESBL-producing
E. coli isolates [48].

Phages attach to specific receptors on bacterial cells,
inject their genetic material, and initiate a lytic
replication cycle. They can also integrate their genetic
material into the bacterial genome, replicating as the
bacterial cell divides [49]. For therapeutic research and
clinical applications, non-lysogenic phages and wild-
type or engineered lytic phages are employed. The
emergence of strains resistant to both phages and
antibiotics is mitigated through phage-antibiotic
therapy [50].

Moreover, to counter phage-resistant bacteria, the use
of phage cocktails is essential. However, before this
approach can be widely adopted in therapy, several
challenges must be addressed, including the limited
host range of phages, systemic side effects, phage
resistance, rapid clearance of phages by the immune
system, issues in phage delivery, and challenges in
phage production [51].

5.3 CRISPR-Cas systems

The CRISPR-Cas system is an adaptive immune
system found in bacteria and archaea. In 2012, it was
demonstrated that the Cas9 protein could be
programmed to cleave DNA at specific sites,
transforming it into a precise tool for genome editing in
agriculture and medicine. This system holds the
potential to target genetic resistance determinants,
offering a precise alternative for controlling Gram-
negative bacteria [52]. The number of CRISPR loci per
genome can vary, but the most effective system is
CRISPR-Cas9, as it utilizes all major biological
molecules: protein, RNA, and DNA and offers greater
customizability and flexibility [53].

Differences in CRISPR loci among bacterial species
influence the efficacy of CRISPR-Cas systems. To
ensure the safety and precision of these systems in
clinical settings, issues such as improving delivery
strategies and mitigating off-target effects must still be
resolved [54]. Several studies have demonstrated that
CRISPR-Cas systems can be engineered into probiotic
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bacteria to specifically target and destroy pathogenic or
drug-resistant bacteria or eliminate antimicrobial
resistance genes [55].

The CRISPR-Cas targeting system effectively
combats antibiotic resistance by selectively inactivating
genes involved in biofilm formation, pathogenesis,
virulence, or bacterial survival through chromosomal
gene cleavage or plasmid elimination [56]. Furthermore,
the CRISPR-Cas system is used alongside other tools to
enable ecasier, more specific, and more sensitive
detection of bacterial infections from samples [57].

6. Conclusion

Today, we are witnessing increasing bacterial
resistance and infections caused by them in the world.
One of the most pressing issues in the management of
illnesses brought on by these bacteria is this issue. The
rapid transmission and spread of organisms capable of
producing the aforementioned enzymes has caused an
increase in hospital-related infections around the world.
ESBL has grown a lot over the past years. Its generating
genes can be spread between bacteria through plasmid
transfer.

Researchers face challenges in detecting ESBLs in
clinical microbiology labs, requiring control of drug use,
monitoring of treatment strains, enzyme detection tests,
and the use of appropriate antibiotics to prevent
resistance. Therefore, combating ESBL and other
antimicrobial resistance requires adopting novel
strategies including next-generation beta-lactamase
inhibitors, nanoparticle-based therapies, engineered
CRISPR-Cas systems, and phage therapy. These
approaches show significant promise but demand
rigorous research and innovative implementation to
mitigate the global burden of drug-resistant infections
and improve treatment outcomes.
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